Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A critical ligamentous mechanism in the evolution of avian flight

Abstract

Despite recent advances in aerodynamic1,2, neuromuscular3,4,5 and kinematic6,7 aspects of avian flight and dozens of relevant fossil discoveries8, the origin of aerial locomotion and the transition from limbs to wings continue to be debated9,10. Interpreting this transition depends on understanding the mechanical interplay of forces in living birds, particularly at the shoulder where most wing motion takes place. Shoulder function depends on a balance of forces from muscles, ligaments and articular cartilages, as well as inertial, gravitational and aerodynamic loads on the wing11. Here we show that the force balance system of the shoulder evolved from a primarily muscular mechanism to one in which the acrocoracohumeral ligament has a critical role. Features of the shoulder of Mesozoic birds and closely related theropod dinosaurs indicate that the evolution of flight preceded the acquisition of the ligament-based force balance system and that some basal birds are intermediate in shoulder morphology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Forelimb skeleton and pectoral girdle of a pigeon.
Figure 2: Force balance for the glenohumeral joint of a gliding pigeon and comparison of alligator and pigeon shoulder morphology.
Figure 3: Comparison of archosaur scapulocoracoids.

Similar content being viewed by others

References

  1. Hedrick, T. L., Usherwood, J. R. & Biewener, A. A. Wing inertia and whole-body accelerations: an analysis of instantaneous aerodynamic force production in cockatiels (Numphicus hollandicus) flying across a range of speeds. J. Exp. Biol. 207, 1689–1702 (2004)

    Article  Google Scholar 

  2. Spedding, G. R., Rosén, M. & Hedenström, A. R. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206, 2313–2344 (2003)

    Article  CAS  Google Scholar 

  3. Biewener, A. A. & Dial, K. P. In vivo strain in the humerus of pigeons (Columba livia) during flight. J. Morphol. 255, 61–75 (1995)

    Article  Google Scholar 

  4. Jenkins, F. A., Dial, K. P. & Goslow, G. E. J. A cineradiographic analysis of bird flight: the wishbone in starlings is a spring. Science 241, 1495–1498 (1988)

    Article  ADS  Google Scholar 

  5. Goslow, G. E. J., Wilson, D. & Poore, S. O. Neuromuscular correlates to the evolution of flapping flight in birds. Brain Behav. Evol. 55, 85–99 (2000)

    Article  Google Scholar 

  6. Tobalske, B. W. Neuromuscular control and kinematics of intermittent flight in the European starling (Sturnus vulgaris). J. Exp. Biol. 198, 1259–1273 (1995)

    CAS  PubMed  Google Scholar 

  7. Tobalske, B. W., Peacock, W. L. & Dial, K. P. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds. J. Exp. Biol. 202, 1725–1739 (1999)

    PubMed  Google Scholar 

  8. Chiappe, L. M. & Witmer, L. M. Mesozoic Birds (Univ. California Press, Berkeley, 2002)

    Google Scholar 

  9. Dial, K. P. Wing-assisted incline running and the evolution of flight. Science 299, 402–404 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Xu, X. et al. Four-winged dinosaur from China. Nature 421, 335–340 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Gatesy, S. M. & Baier, D. B. The origin of the avian flight stroke: a kinematic and kinetic perspective. Paleobiology 31, 382–399 (2005)

    Article  Google Scholar 

  12. Gray, S. J. Animal Locomotion. (Weidenfeld and Nicolson, London, 1968)

    Google Scholar 

  13. Pennycuick, C. J. The strength of the pigeon's wing bones in relation to their function. J. Exp. Biol. 46, 219–233 (1967)

    CAS  PubMed  Google Scholar 

  14. Jenkins, F. A. The evolution of the avian shoulder joint. Am. J. Sci. 293, 253–267 (1993)

    Article  ADS  Google Scholar 

  15. Poore, S. O., Sánchez-Haiman, A. & Goslow, G. E. J. Wing upstroke and the evolution of flapping flight. Nature 387, 798–802 (1997)

    Article  ADS  Google Scholar 

  16. Sy, M. Funktionell-anatomische untersuchungen am vogelflügel. J. Ornithol. 84, 199–296 (1936)

    Article  Google Scholar 

  17. Bannasch, R. Morphologisch-funktionelle untersuchung am lokomotionsapparat der pinguine als grundlage fur ein allgemeines bewegungsmodell des unterwasserfluges. Gegenbaurs Morphol. Jahrb. 132, 757–817 (1986)

    CAS  PubMed  Google Scholar 

  18. Usherwood, J. R., Hedrick, T. L., McGowan, C. P. & Biewener, A. A. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications. J. Exp. Biol. 208, 355–369 (2005)

    Article  Google Scholar 

  19. Jenkins, F. A. & Goslow, G. E. J. The functional anatomy of the shoulder of the Savannah monitor lizard (Varanus exanthematicus). J. Morphol. 175, 195–216 (1983)

    Article  Google Scholar 

  20. Ostrom, J. H. Some hypothetical stages in the evolution of avian flight. Smithson. Contrib. Paleobiol. 27, 1–21 (1976)

    Google Scholar 

  21. Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Zhou, Z. & Zhang, F. Anatomy of the primitive bird Sapeornis chaoyangensis from the early cretaceous of Liaoning, China. Can. J. Earth Sci. 40, 731–747 (2003)

    Article  ADS  Google Scholar 

  23. Norell, M. A. & Clarke, J. A. Fossil that fills a critical gap in avian evolution. Nature 409, 181–184 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Dial, K. P. & Biewener, A. A. Pectoralis muscle force and power output during different modes of flight in pigeons (Columba livia). J. Exp. Biol. 176, 31–54 (1993)

    Google Scholar 

  25. Poore, S. O., Ashcroft, A., Sánchez-Haiman, A. & Goslow, G. E. J. The contractile properties of the M. supracoracoideus in the pigeon and starling: a case for long-axis rotation of the humerus. J. Exp. Biol. 200, 2987–3002 (1997)

    PubMed  Google Scholar 

  26. Woolley, J. D. The functional morphology of the avian flight muscle M. coracobrachialis posterior. J. Exp. Biol. 203, 1767–1776 (2000)

    CAS  PubMed  Google Scholar 

  27. Gatesy, S. M., Dial, K. P. & Jenkins, F. A. An inside look at skeletal motion in flying birds. J. Vert. Paleo. 24, 63A (2004)

    Google Scholar 

  28. De Beer, G. Archaeopteryx lithographica: A Study Based upon the British Museum Specimen (The Trustees of the British Museum, London, 1954)

    Google Scholar 

  29. Paul, G. S. Dinosaurs of the Air (The Johns Hopkins University Press, Baltimore, 2002)

    Google Scholar 

  30. Chiappe, L. M., Ji, S., Ji, Q. & Norell, M. A. Anatomy and systematics of the Confuciousornithidae (Theropoda: Aves) from the Late Mesozoic of Northeastern China. Bull. Am. Mus. Nat. Hist. 242, 1–89 (1999)

    Google Scholar 

Download references

Acknowledgements

We are grateful to K. Dial for the pigeon specimen, K. Middleton for help with VTK, C. Sullivan and L. Claessens for sharing alligator video and specimens, Z. Zhou for access to fossils at IVPP, T. Roberts for methodological advice, and the Brown Morphology group. We thank Autodesk for Maya software support and the SHAPE lab at Brown University for access to 3D laser scanning equipment. Funding was provided by the National Science Foundation (S.M.G., SHAPE lab), a Bushnell Faculty Research Grant (S.M.G.), the Paleontological Society (D.B.B.) and Sigma Xi (D.B.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Baier.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baier, D., Gatesy, S. & Jenkins, F. A critical ligamentous mechanism in the evolution of avian flight. Nature 445, 307–310 (2007). https://doi.org/10.1038/nature05435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05435

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing