Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamical evolution of ecosystems

Abstract

The assembly of an ecosystem such as a tropical forest depends crucially on the species interaction network, and the deduction of its rules is a formidably complex problem1. In spite of this, many recent studies2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 using Hubbell’s neutral theory of biodiversity and biogeography2 have demonstrated that the resulting emergent macroscopic behaviour of the ecosystem at or near a stationary state shows a surprising simplicity reminiscent of many physical systems17. Indeed the symmetry postulate2, that the effective birth and death rates are species-independent within a single trophic level, allows one to make analytical predictions for various static distributions such as the relative species abundance3,4,5,6,7,8,9,10,11,12, β-diversity13,14,15 and the species–area relationship16. In contrast, there have only been a few studies of the dynamics and stability of tropical rain forests18,19,20. Here we consider the dynamical behaviour of a community, and benchmark it against the exact predictions of a neutral model near or at stationarity. In addition to providing a description of the relative species abundance, our analysis leads to a quantitative understanding of the species turnover distribution and extinction times, and a measure of the temporal scales of neutral evolution. Our model gives a very good description of the large quantity of data collected in Barro Colorado Island in Panama in the period 1990–2000 with just three ecologically relevant parameters and predicts the dynamics of extinction of the existing species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative species abundance plot in the BCI forest from the 1990 census (Center for Tropical Forest Science website).
Figure 2: STD for the interval 1990–95 in the BCI forest.
Figure 3: Restricted relative species abundance.

Similar content being viewed by others

References

  1. Montoya, J. M., Pimm, S. L. & Solé, R. Ecological networks and their fragility. Nature 442, 259–264 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ., New Jersey, 2001)

    Google Scholar 

  3. Bell, G. Neutral macroecology. Science 293, 2413–2418 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Chave, J. Neutral theory and community ecology. Ecol. Lett. 7, 241–253 (2004)

    Article  ADS  Google Scholar 

  5. Bell, G. The distribution of abundance in neutral communities. Am. Nat. 155, 606–617 (2000)

    Article  Google Scholar 

  6. McKane, A., Alonso, D. & Solé, R. V. Mean-field stochastic theory for species-rich assembled communities. Phys. Rev. E 62, 8466–8484 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Pigolotti, S., Flammini, A. & Maritan, A. Stochastic model for the species abundance problem in an ecological community. Phys. Rev. E 70, 011916 (2004)

    Article  ADS  Google Scholar 

  9. Volkov, I., Banavar, J. R., He, F., Hubbell, S. P. & Maritan, A. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438, 658–661 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Alonso, D. & McKane, A. Sampling Hubbell’s neutral theory of biodiversity. Ecol. Lett. 7, 911–914 (2004)

    Article  Google Scholar 

  11. Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends Ecol. Evol. 21, 451–457 (2006)

    Article  Google Scholar 

  12. Etienne, R. S. & Alonso, D. A dispersal-limited sampling theory for species and alleles. Ecol. Lett. 8, 1147–1156 (2005)

    Article  Google Scholar 

  13. Chave, J. & Leigh, E. G. Jr. A spatially-explicit model of β-diversity. Theor. Popul. Biol. 62, 153–168 (2002)

    Article  Google Scholar 

  14. Condit, R. et al. Beta-diversity in tropical forest trees. Science 295, 666–669 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Zillio, T., Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Spatial scaling in model plant communities. Phys. Rev. Lett. 95, 098101 (2005)

    Article  ADS  Google Scholar 

  16. Durrett, R. & Levin, S. A. Spatial models for species area curves. J. Theor. Biol. 179, 119–127 (2002)

    Article  Google Scholar 

  17. Harte, J. Tail of death and resurrection. Nature 424, 1006–1007 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Clark, J. S. & McLachlan, J. S. Stability of forest biodiversity. Nature 423, 635–638 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Condit, R. et al. Dynamics of the forest communities at Pasoh and Barro Colorado: comparing two 50-ha plots. Phil. Trans. R. Soc. Lond. B 354, 1739–1748 (1999)

    Article  CAS  Google Scholar 

  20. Sheil, D., Jennings, S. & Savill, P. Long-term plot observations of vegetation dynamics in Budongo, a Uganda rain forest. J. Trop. Ecol. 16, 765–800 (2000)

    Article  Google Scholar 

  21. Gilbert, B., Laurance, W. F., Leigh, E. G. & Nascimento, H. E. M. Can neutral theory predict the responses of amazonian tree communities to forest fragmentation?. Am. Nat. 168, 304–317 (2006)

    Article  Google Scholar 

  22. Gonzalez, A., Lawton, J. H., Gilbert, F. S., Blackburn, T. M. & Evans-Freke, I. I. Metapopulation dynamics, abundance, and distribution in a microsystem. Science 281, 2045–2047 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions (National Bureau of Standards, Gaithersburg, Maryland, 1964).

  24. Foster, D. R. & Zebrick, T. M. Long-term vegetation dynamics and disturbance history of a Tsuga -dominated forest in New England. Ecology 74, 982–998 (1993)

    Article  Google Scholar 

  25. Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827–829 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Adler, P. B. Neutral models fail to reproduce observed species–area and species–time relationships in Kansas grasslands. Ecology 85, 1265–1272 (2004)

    Article  Google Scholar 

  28. Hilborn, R. & Mangel, M. The Ecological Detective. Confronting Models with Data (Princeton Univ. Press, Princeton, New Jersey, 1997)

    Google Scholar 

  29. Preston, F. W. The commonness and rarity of species. Ecology 29, 254–283 (1948)

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Volkov for comments. This work was supported by COFIN 2005, the NSF, NASA and NSF IGERT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayanth R. Banavar or Amos Maritan.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Discussion, Supplementary Equations, Supplementary Tables and Supplementary Figures. (PDF 319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azaele, S., Pigolotti, S., Banavar, J. et al. Dynamical evolution of ecosystems. Nature 444, 926–928 (2006). https://doi.org/10.1038/nature05320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05320

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing