Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Mesozoic gliding mammal from northeastern China

A Corrigendum to this article was published on 01 March 2007

Abstract

Gliding flight has independently evolved many times in vertebrates. Direct evidence of gliding is rare in fossil records and is unknown in mammals from the Mesozoic era. Here we report a new Mesozoic mammal from Inner Mongolia, China, that represents a previously unknown group characterized by a highly specialized insectivorous dentition and a sizable patagium (flying membrane) for gliding flight. The patagium is covered with dense hair and supported by an elongated tail and limbs; the latter also bear many features adapted for arboreal life. This discovery extends the earliest record of gliding flight for mammals to at least 70 million years earlier in geological history, and demonstrates that early mammals were diverse in their locomotor strategies and lifestyles; they had experimented with an aerial habit at about the same time as, if not earlier than, when birds endeavoured to exploit the sky.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volaticotherium antiquus gen. et sp. nov.
Figure 2: Phylogenetic relationships of major Mesozoic mammalian groups, including Volaticotherium antiquus.
Figure 3: Detailed features related to gliding and arboreal locomotion of Volaticotherium antiquus.

Similar content being viewed by others

References

  1. Shen, Y.-b., Chen, P.-j. & Huang, D.-y. Age of fossil conchostracans from Daohugou of Ningcheng, Inner Mongolia [in Chinese with English abstract]. J. Stratigr. 27, 311–313 (2003)

    Google Scholar 

  2. Chen, W. et al. Isotope geochronology of the fossil-bearing beds in the Daohugou area, Ningcheng, Inner Mongolia [in Chinese]. Geol. Bull. Chin. 23, 1165–1169 (2004)

    CAS  Google Scholar 

  3. Zhang, J.-f. Discovery of Daohugou Biota (Pre-Jehol Biota) with a discussion on its geological age [in Chinese with English abstract]. J. Stratigr. 26, 173–177 (2002)

    Google Scholar 

  4. He, H.-y. et al. 40Ar/39Ar dating of ignimbrite from Inner Mongolia, northeastern China, indicates a post-Middle Jurassic age for the overlying Daohugou Bed. Geophys. Res. Lett. 31, L20609, doi:10.1029/2004GL020792. (2004)

  5. Wang, X.-l. et al. Stratigraphy and age of the Dauhugou bed in Ningcheng, Inner Mongolia. Chin. Sci. Bull. 50, 2369–2376 (2005)

    Article  Google Scholar 

  6. Swisher, C. C. et al. Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature 400, 58–61 (1999)

    Article  CAS  ADS  Google Scholar 

  7. Sigogneau-Russell, D. Two possibly aquatic triconodont mammals from the Early Cretaceous of Morocco. Acta Palaeontol. Pol. 40, 149–162 (1995)

    Google Scholar 

  8. Cifelli, R. L., Wible, J. R. & Jenkins, F. A. Jr. Triconodont mammals from the Cloverly Formation (Lower Cretaceous), Montana and Wyoming. J. Vert. Paleontol. 18, 237–241 (1998)

    Article  Google Scholar 

  9. Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z.-x. Mammals from the Age of Dinosaurs: Origins, Evolution and Structure (Columbia Univ. Press, New York, 2004)

    Book  Google Scholar 

  10. Ji, Q., Luo, Z.-x., Yuan, C.-x. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006)

    Article  CAS  ADS  Google Scholar 

  11. Rowe, T. B. Definition, diagnosis, and origin of Mammalia. J. Vert. Paleontol. 8, 241–264 (1988)

    Article  Google Scholar 

  12. Storch, G., Engesser, B. & Wuttke, M. Oldest fossil record of gliding in rodents. Nature 379, 439–441 (1996)

    Article  CAS  ADS  Google Scholar 

  13. Rayner, J. M. V. Flight adaptations in vertebrates. Symp. Zool. Soc. Lond. 48, 137–172 (1981)

    Google Scholar 

  14. Norberg, U. M. in Functional Vertebrate Morphology (eds Hildebrand, M., Bramble, D. M., Liem, K. F. & Wake, D. B.) 129–158 (The Belknap Press, Harvard Univ., Massachusetts, 1985)

    Google Scholar 

  15. Norberg, U. M. Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. Am. Nat. 126, 303–327 (1985)

    Article  Google Scholar 

  16. Johnson-Murray, J. Myology of the gliding membranes of some Petauristine rodents (genera: Glaucomys, Pteromys, Petinomys, and Petaurista). J. Mamm. 58, 374–384 (1977)

    Article  Google Scholar 

  17. Runestad, J. A. & Ruff, C. B. Structural adaptations for gliding mammals with implications for locomotor behaviour in paromomyids. Am. J. Phys. Anthrop. 98, 101–119 (1995)

    Article  CAS  Google Scholar 

  18. Thorington, R. W. & Heaney, L. R. Body proportions and gliding adaptations of flying squirrels. J. Mamm. 62, 101–114 (1981)

    Article  Google Scholar 

  19. Ji, Q., Luo, Z. & Ji, S. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398, 326–330 (1999)

    Article  CAS  Google Scholar 

  20. Hu, Y., Wang, Y., Luo, Z. & Li, C. A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390, 137–142 (1997)

    Article  CAS  ADS  Google Scholar 

  21. Ji, Q. et al. The earliest known eutherian mammal. Nature 416, 816–822 (2002)

    Article  CAS  ADS  Google Scholar 

  22. Luo, Z.-x., Ji, Q., Wible, J. R. & Yuan, C.-x. An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302, 1934–1940 (2003)

    Article  CAS  ADS  Google Scholar 

  23. Lindenmayer, D. Gliders of Australia: A Natural History (Univ. of New South Wales Press, New South Wales, 2002)

    Google Scholar 

  24. Argot, C. Functional-adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus.. J. Morphol. 253, 76–108 (2002)

    Article  Google Scholar 

  25. Jenkins, F. A. & Parrington, F. R. The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium.. Phil. Trans. R. Soc. Lond. B 273, 387–431 (1976)

    Article  ADS  Google Scholar 

  26. Hu, Y., Meng, J., Wang, Y. & Li, C. Large Mesozoic mammals fed on young dinosaurs. Nature 433, 149–153 (2005)

    Article  CAS  ADS  Google Scholar 

  27. Beard, K. C. Gliding behaviour and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermorptera). Nature 345, 340–341 (1990)

    Article  ADS  Google Scholar 

  28. Beard, K. C. (1993). in Primates and Their Relatives in Phylogenetic Perspective (ed. MacPhee, R. D. E.) 63–90 (Plenum, New York, 1993)

    Book  Google Scholar 

  29. Hamrick, M. W., Rosenman, B. A. & Brush, J. A. Phalangeal morphology of the Paromonyidae (?Primates, Plesiadapiformes): the evidence for gliding behavior reconsidered. Am. J. Phys. Anthrop. 109, 397–413 (1999)

    Article  CAS  Google Scholar 

  30. Szalay, F. S. & Lucas, S. G. in Primates and Their Relatives in Phylogenetic Perspective (ed. MacPhee, R. D. E.) 187–226 (Plenum, New York, 1993)

    Book  Google Scholar 

  31. Bloch, J. I. & Boyer, D. M. Grasping primate origins. Science 298, 1606–1610 (2002)

    Article  CAS  ADS  Google Scholar 

  32. Caple, G., Balda, R. P. & Willis, W. R. The physics of leaping animals and the evolution of preflight. Am. Nat. 121, 455–476 (1983)

    Article  Google Scholar 

  33. Stafford, B. J., Thorington, R. W. & Kawamichi, T. Positional behavior of Japanese giant flying squirrels (Petaurista leucogenys). J. Mamm. 84, 63–271 (2003)

    Article  Google Scholar 

  34. Norberg, U. M. Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Zoophysiol. 27, 1–291 (1990)

    Article  Google Scholar 

  35. Lillegraven, J. A., Kielan-Jaworowska, Z., Clemens, W. A. . Mesozoic Mammals: The First Two-Thirds of Mammalian History (Univ. of California Press: Berkeley, 1979)

    Google Scholar 

  36. Nowak, R. M. Walker’s Mammals of the World 6th edn (Johns Hopkins Univ. Press, Baltimore, 1999)

    Google Scholar 

  37. Norberg, U. M. in European Bat Research (eds Hanák, V., Horácek, I. & Gaisler, J.) 197–211 (Charles Univ. Press, Praha, 1989)

    Google Scholar 

  38. Fenton, M. B., Audet, D., Obrist, M. K. & Rydell, J. Signal strength, timing, and self-deafening: the evolution of echolocation in bats. Paleobiology 21, 229–242 (1995)

    Article  Google Scholar 

  39. Simmons, N. B. & Geisler, J. H. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235, 1–182 (1998)

    Google Scholar 

  40. Gunnell, G. F. & Simmons, N. B. Fossil evidence and the origin of bats. J. Mamm. Evol. 12, 209–246 (2005)

    Article  Google Scholar 

  41. Thorington, R. W. Jr. Flying squirrels are monophyletic. Science 225, 1048–1050 (1984)

    Article  ADS  Google Scholar 

  42. Jackson, S. M. Glide angle in the genus Petaurus and a review of gliding in mammals. Mamm. Rev. 30, 9–30 (1999)

    Article  Google Scholar 

  43. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods. Version 4 (Sinauer Assoc., Sunderland, Massachusetts, 2002)

    Google Scholar 

  44. Maddison, W. P. & Maddison, D. R. Mesquite: a Modular System for Evolutionary Analysis. Version 1.06http://mesquiteproject.org〉 (2005a)

    Google Scholar 

  45. Maddison, W. P. & Maddison, D. R. MacClade: Analysis of Phylogeny and Character Evolution. Version 4.08 (Sinauer Assoc., Sunderland, Massachusetts, 2005b)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Z. Zhou, F. Zhang, X. Xu, Y. Wang, F. Jin, and J. Zhang for help in coordinating the research and fieldwork; S. Xie for specimen preparation; M. Yang for drawing Supplementary Fig. 13; and L. Meeker for X-radiography. The research has been funded by the Chinese Academy of Sciences, the National Natural Science Foundation of China; and Major Basic Research Projects of the Ministry of Science and Technology, China. The research of Y.H. is also supported by a fellowship from the American Museum of Natural History, New York.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Meng or Yaoming Hu.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains details on the following: A, Preservation of the specimen. B, Age of the Daohugou Beds. C, Comparative description. D, Notes on Limb Measurements. E, Character list and data matrix. F, Phylogenetic analysis. (DOC 606 kb)

Supplementary Figures 1

This file contains Supplementary Figures 1–5. (DOC 3310 kb)

Supplementary Figures 2

This file contains Supplementary Figures 6–13. (DOC 4029 kb)

Supplementary Tables

This file contains Supplementary Tables 1–7. (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Hu, Y., Wang, Y. et al. A Mesozoic gliding mammal from northeastern China. Nature 444, 889–893 (2006). https://doi.org/10.1038/nature05234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05234

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing