Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The critical role of disks in the formation of high-mass stars

Abstract

Although massive stars (commonly defined as those in excess of about eight solar masses, or with initial luminosities of a thousand times the solar luminosity or more) have an enormous impact on the galactic environment, how they form has been a mystery. The solution probably involves the existence of accretion disks. Rotational motions have been found in the gas surrounding young high-mass stars, which suggests that non-spherical accretion could be the fundamental ingredient of the massive-star formation recipe.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the circumstellar disk and associated bipolar outflow in the high-mass (proto)star IRAS 20126+4104.

Similar content being viewed by others

References

  1. Shu, F. H., Adams, F. C. & Lizano, S. Star formation in molecular clouds—Observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987)

    Article  CAS  ADS  Google Scholar 

  2. Palla, F. & Stahler, S. W. The pre-main-sequence evolution of intermediate-mass stars. Astrophys. J. 418, 414–425 (1993)

    Article  CAS  ADS  Google Scholar 

  3. Kahn, F. D. Cocoons around early-type stars. Astron. Astrophys. 37, 149–162 (1974)

    ADS  Google Scholar 

  4. Simon, M., Dutrey, A. & Guilloteau, S. Dynamical masses of T Tauri stars and calibration of pre-main-sequence evolution. Astrophys. J. 545, 1034–1043 (2000)

    Article  CAS  ADS  Google Scholar 

  5. Galli, D. & Shu, F. H. Collapse of magnetized molecular cloud cores. II. Numerical results. Astrophys. J. 417, 243–258 (1993)

    Article  ADS  Google Scholar 

  6. Bonnell, I. A. & Bate, M. R. Binary systems and stellar mergers in massive star formation. Mon. Not. R. Astron. Soc. 362, 915–920 (2005)

    Article  ADS  Google Scholar 

  7. McKee, C. F. & Tan, J. C. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds. Nature 416, 59–61 (2002)

    Article  CAS  ADS  Google Scholar 

  8. Bonnell, I. A., Vine, S. G. & Bate, M. R. Massive star formation: nurture, not nature. Mon. Not. R. Astron. Soc. 349, 735–741 (2004)

    Article  ADS  Google Scholar 

  9. Nakano, T. Conditions for the formation of massive stars through nonspherical accretion. Astrophys. J. 345, 464–471 (1989)

    Article  ADS  Google Scholar 

  10. Jijina, J. & Adams, F. C. Infall collapse solutions in the inner limit: Radiation pressure and its effects on star formation. Astrophys. J. 462, 874–887 (1996)

    Article  ADS  Google Scholar 

  11. Yorke, H. W. & Sonnhalter, C. On the formation of massive stars. Astrophys. J. 569, 846–862 (2002)

    Article  ADS  Google Scholar 

  12. Krumholz, M. R., McKee, C. F. & Klein, R. I. The formation of stars by gravitational collapse rather than competitive accretion. Nature 438, 332–334 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Krumholz, M. R., Klein, R. I. & McKee, C. F. in Massive Star Birth: A Crossroads of Astrophysics (eds Cesaroni, R., Felli, M., Churchwell, E. & Walmsley, M.) 231–236 (IAU Symp. 227, Cambridge Univ. Press, Cambridge, UK, 2005)

    Google Scholar 

  14. Krumholz, M. R., McKee, C. F. & Klein, R. I. How protostellar outflows help massive stars form. Astrophys. J. 618, L33–L36 (2005)

    Article  ADS  Google Scholar 

  15. Shu, F. H., Najita, J. R., Shang, H. & Li, Z-Y. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 789–813 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  16. Ferreira, J. & Pelletier, G. Magnetized accretion-ejection structures. III. Stellar and extragalactic jets as weakly dissipative disk outflows. Astron. Astrophys. 295, 807–832 (1995)

    ADS  Google Scholar 

  17. Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 139, 1217–1238 (1964)

    Article  ADS  Google Scholar 

  18. Lodato, G. & Rice, W. K. M. Testing the locality of transport in self-gravitating accretion discs – II. The massive disc case. Mon. Not. R. Astron. Soc. 358, 1489–1500 (2005)

    Article  ADS  Google Scholar 

  19. Mejia, A. C., Durisen, R. H., Pickett, M. K. & Cai, K. The thermal regulation of gravitational instabilities in protoplanetary disks. II. Extended simulations with varied cooling rates. Astrophys. J. 619, 1098–1113 (2005)

    Article  ADS  Google Scholar 

  20. Whitehouse, S. C. & Bate, M. R. Smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation. Mon. Not. R. Astron. Soc. 353, 1078–1094 (2004)

    Article  ADS  Google Scholar 

  21. Rice, W. K. M., Lodato, G. & Armitage, P. J. Investigating fragmentation conditions in self-gravitating accretion discs. Mon. Not. R. Astron. Soc. 364, L56–L60 (2005)

    Article  ADS  Google Scholar 

  22. Cesaroni, R., Galli, D., Lodato, G., Walmsley, C. M. & Zhang, Q. in Protostars and Planets V (eds Reipurth, B. Jewitt, D. & Keil, K.) (Univ. Arizona Press, Tucson, in the press).

  23. Shepherd, D. in Massive Star Birth: A Crossroads of Astrophysics (eds Cesaroni, R., Felli, M., Churchwell, E. & Walmsley, M.) 237–246 (IAU Symp. 227, Cambridge Univ. Press, Cambridge, UK, 2005)

    Google Scholar 

  24. Kurtz, S., Cesaroni, R., Churchwell, E., Hofner, P. & Walmsley, C. M. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 299–326 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  25. Shepherd, D. S. & Churchwell, E. High-velocity molecular gas from high-mass star formation regions. Astrophys. J. 457, 267–276 (1996)

    Article  CAS  ADS  Google Scholar 

  26. Osterloh, M., Henning & Launhardt, R. Infrared images and millimeter data from cold southern IRAS sources. Astrophys. J. 110, (Suppl.)71–114 (1997)

    Article  CAS  ADS  Google Scholar 

  27. Zhang, Q. et al. Search for CO outflows toward a sample of 69 high-mass protostellar candidates: Frequency of occurrence. Astrophys. J. 552, L167–L170 (2001)

    Article  ADS  Google Scholar 

  28. Beuther, H. et al. Massive molecular outflows. Astron. Astrophys. 383, 892–904 (2002)

    Article  ADS  Google Scholar 

  29. Chini, R. et al. The formation of a massive protostar through the disk accretion of gas. Nature 429, 155–157 (2004)

    Article  CAS  ADS  Google Scholar 

  30. Sako, S. et al. No high-mass protostars in the silhouette young stellar object eqn17–SO1. Nature 434, 995–998 (2005)

    Article  CAS  ADS  Google Scholar 

  31. Sridharan, T. K., Williams, S. J. & Fuller, G. A. The direct detection of a (proto)binary/disk system in IRAS 20126+4104. Astrophys. J. 631, L73–L76 (2005)

    Article  ADS  Google Scholar 

  32. Greenhill, L. J., Reid, M. J., Chandler, C. J., Diamond, P. J. & Elitzur, M. in Star Formation at High Angular Resolution (eds Burton, M., Jayawardhana, R. & Bourke, T.) 155–160 (IAU Symp. 221, Kluwer/Springer, Dordrecht, 2004)

    Google Scholar 

  33. Schreyer, K., Henning, van der Tak, F. F. S., Boonman, A. M. S. & van Dishoeck, E. F. The young intermediate-mass stellar object AFGL 490 – A disk surrounded by a cold envelope. Astron. Astrophys. 394, 561–583 (2002)

    Article  CAS  ADS  Google Scholar 

  34. Shepherd, D. S., Claussen, M. J. & Kurtz, S. E. Evidence for a solar system-size accretion disk around the massive protostar G192.16–3.82. Science 292, 1513–1518 (2001)

    Article  CAS  ADS  Google Scholar 

  35. Zhang, Q., Hunter, T. R., Sridharan, T. K. & Ho, P. T. P. A disk/jet system toward the high-mass young star in AFGL 5142. Astrophys. J. 566, 982–992 (2002)

    Article  CAS  ADS  Google Scholar 

  36. Bernard, J. P., Dobashi, K. & Momose, M. Outflow and disk around the very young massive star GH2O 092.67+03.07. Astron. Astrophys. 350, 197–203 (1999)

    CAS  ADS  Google Scholar 

  37. Jiang, Z. et al. A circumstellar disk associated with a massive protostellar object. Nature 437, 112–115 (2005)

    Article  CAS  ADS  Google Scholar 

  38. Cesaroni, R. et al. A study of the Keplerian accretion disk and precessing outflow in the massive protostar IRAS 20126+4104. Astron. Astrophys. 434, 1039–1054 (2005)

    Article  CAS  ADS  Google Scholar 

  39. Hutawarakorn, B. & Cohen, R. J. Magnetic field structure in the bipolar outflow source G 35.2–0.74N: MERLIN spectral line results. Mon. Not. R. Astron. Soc. 303, 845–854 (1999)

    Article  CAS  ADS  Google Scholar 

  40. Patel, N. A. et al. A disk of dust and molecular gas around a high-mass protostar. Nature 437, 109–111 (2005)

    Article  CAS  ADS  Google Scholar 

  41. van der Tak, F. F. S. & Menten, K. M. Very compact radio emission from high-mass protostars. II. Dust disks and ionized accretion flows. Astron. Astrophys. 437, 947–956 (2005)

    Article  CAS  ADS  Google Scholar 

  42. Beuther, H., Zhang, Q., Sridharan, T. K. & Chen, Y. Testing the massive disk scenario for IRAS 18089–1732. Astrophys. J. 628, 800–810 (2005)

    Article  CAS  ADS  Google Scholar 

  43. Chini, R. et al. A remnant disk around a young massive star. Astrophys. J. 645, L61–L64 (2006)

    Article  CAS  ADS  Google Scholar 

  44. Zhang, Q. in Massive Star Birth: A Crossroads of Astrophysics (eds Cesaroni, R., Felli, M., Churchwell, E. & Walmsley, M.) 135–144 (IAU Symp. 227, Cambridge Univ. Press, Cambridge, UK, 2005)

    Google Scholar 

  45. Bertin, G. & Lodato, G. A class of self-gravitating accretion disks. Astron. Astrophys. 350, 694–704 (1999)

    ADS  Google Scholar 

  46. Moscadelli, L., Cesaroni, R. & Rioja, M. J. Water masers in the massive protostar IRAS 20126+4104: ejection and deceleration. Astron. Astrophys. 438, 889–898 (2005)

    Article  CAS  ADS  Google Scholar 

  47. Beuther, H. et al. Submillimeter array 440 μm/690 GHz line and continuum observations of Orion KL. Astrophys. J. 636, 323–331 (2006)

    Article  CAS  ADS  Google Scholar 

  48. Beuther, H. & Shepherd, D. in Cores to Clusters (eds Kumar, M. S. N., Tafalla, M. & Caselli, P.) 105–119 (Springer, New York, 2005)

    Book  Google Scholar 

  49. Hollenbach, D. J., Yorke, H. W. & Johnstone, D. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 401–428 (Univ. Arizona Press, Tucson, 2000)

    Google Scholar 

  50. Richling, S. & Yorke, H. W. Photoevaporation of protostellar disks. II. The importance of UV dust properties and ionizing flux. Astron. Astrophys. 327, 317–324 (1997)

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Felli for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Cesaroni.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesaroni, R., Galli, D., Lodato, G. et al. The critical role of disks in the formation of high-mass stars. Nature 444, 703–706 (2006). https://doi.org/10.1038/nature05344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05344

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing