Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How Neanderthal molar teeth grew

Abstract

Growth and development are both fundamental components of demographic structure and life history strategy. Together with information about developmental timing they ultimately contribute to a better understanding of Neanderthal extinction. Primate molar tooth development tracks the pace of life history evolution most closely1,2, and tooth histology reveals a record of birth as well as the timing of crown and root growth. High-resolution micro-computed tomography now allows us to image complex structures and uncover subtle differences in adult tooth morphology that are determined early in embryonic development3. Here we show that the timing of molar crown and root completion in Neanderthals matches those known for modern humans but that a more complex enamel–dentine junction morphology and a late peak in root extension rate sets them apart. Previous predictions about Neanderthal growth, based only on anterior tooth surfaces4,5, were necessarily speculative. These data are the first on internal molar microstructure; they firmly place key Neanderthal life history variables within those known for modern humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SR-μCT-based three-dimensional virtual reconstruction of deciduous and permanent Neanderthal molars from La Chaise.
Figure 2: Graphs of deciduous second molar enamel formation rates for the Neanderthal and three typical modern human deciduous molars.
Figure 3: Graphs of daily occlusal enamel formation rates in the permanent Neanderthal M1 and in modern human molars.
Figure 4: Growth curves for roots of M1 for 20 modern humans (by sex) and the Neanderthal M1.
Figure 5: SR-μCT-based three-dimensional visualization of the differences in root extension rate.

Similar content being viewed by others

References

  1. Smith, B. H. Dental development and the evolution of life history in Hominidae. Am. J. Phys. Anthropol. 86, 157–174 (1991)

    Article  Google Scholar 

  2. Smith, B. H. & Tompkins, R. L. Towards a life history of the Hominidae. Annu. Rev. Anthropol. 24, 257–279 (1995)

    Article  Google Scholar 

  3. Avishai, G. et al. New approach to quantifying developmental variation in the dentition using serial microtomographic imaging. Microsc. Res. Tech. 65, 263–269 (2004)

    Article  PubMed  Google Scholar 

  4. Ramirez-Rozzi, F. V. & Bermudez de Castro, J. M. Surprisingly rapid growth in Neanderthals. Nature 428, 936–939 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Guatelli-Steinberg, D., Reid, D. J. & Bishop, T. A. Anterior tooth growth periods in Neandertals were comparable to those in modern humans. Proc. Natl Acad. Sci. USA 102, 14197–14202 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Debénath, A. Néanderthaliens et Cro-Magnons. Les Temps Glaciaires dans le Bassin de la Charente (Le Croît Vif, Paris, 2006)

    Google Scholar 

  7. Dean, M. C. Comparative observations on the spacing of short-period (von Ebner’s) lines in dentine. Archs Oral Biol. 43, 1009–1021 (1998)

    Article  CAS  Google Scholar 

  8. Dean, M. C. Tooth microstructure tracks the pace of human life-history evolution. Proc. R. Soc. B 273, 2799–2808 (2006)

    Article  Google Scholar 

  9. Jernvall, J. & Thesleff, I. Reiterative signalling and patterning in mammalian tooth morphogenesis. Mech. Dev. 92, 19–29 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Thesleff, I., Keranen, S. & Jernvall, J. Enamel knots as signalling centers linking tooth morphogenesis and odontoblast differentiation. Adv. Dent. Res. 15, 14–18 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Bailey, S. E. A closer look at Neanderthal postcanine dental morphology: The mandibular dentition. Anat. Rec. (New Anat.) 269, 148–156 (2002)

    Article  Google Scholar 

  12. Kono, R. T. Molar enamel thickness and distribution patterns in extant great apes and humans: New insights based on a 3-dimensional whole crown perspective. Anthropol. Sci. 112, 121–146 (2004)

    Article  Google Scholar 

  13. Olejniczak, A., Martin, L. B. & Ulhaas, L. Quantification of dentine shape in anthropoid primates. Ann. Anat. 186, 479–485 (2004)

    Article  PubMed  Google Scholar 

  14. Suwa, G. & Kono, R. T. A micro-CT based study of linear enamel thickness in the mesial cusp section of human molars: Reevaluation of methodology and assessment of within-tooth, serial, and individual variation. Anthropol. Sci. 113, 273–289 (2005)

    Article  Google Scholar 

  15. Liversidge, H. M. & Molleson, T. Variation in crown and root formation and eruption of human deciduous teeth. Am. J. Phys. Anthropol. 123, 172–180 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Reid, D. J. & Dean, M. C. Variation in modern human enamel formation times. J. Hum. Evol. 50, 329–346 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Dean, M. C., Stringer, C. B. & Bromage, T. G. Age at death of the Neanderthal child from Devils Tower, Gibraltar and the implications for studies of general growth and development in Neanderthals. Am. J. Phys. Anthropol. 70, 301–309 (1986)

    Article  CAS  PubMed  Google Scholar 

  18. Stringer, C. B., Dean, M. C. & Martin, R. D. in Primate Life History and Evolution: Monographs in Primatology Vol. 14 (ed. De Rousseau, C. J.) 115–152 (Wiley-Liss, New York, 1990)

    Google Scholar 

  19. Trinkaus, E. & Tompkins, R. L. in Primate Life History and Evolution: Monographs in Primatology Vol. 14 (ed. De Rousseau, C. J.) 153–180 (Wiley-Liss, New York, 1990)

    Google Scholar 

  20. Tillier, A.-M., Mann, A. E., Monge, J. & Lampl, M. L’ontogenèse, la croissance de l’émail dentaire et l’origine de l’homme moderne: l’exemple des Néandertaliens. Anthropol. Préhist. 106, 97–104 (1995)

    Google Scholar 

  21. Rossi, P. F., Bondioli, L., Geusa, G., & Macchiarelli, R., in Digital Archives of Human Paleobiology (eds Bondioli, L. & Macchiarelli, R.) (E-LISA, Milano, 1999) [CD-ROM].

  22. Dean, M. C. et al. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414, 628–631 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Gleiser, I. & Hunt, E. E. The permanent mandibular molar: Its calcification, eruption and decay. Am. J. Phys. Anthropol. 13, 253–283 (1955)

    Article  CAS  PubMed  Google Scholar 

  24. Shellis, R. P. Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Archs Oral Biol. 29, 697–705 (1984)

    Article  CAS  Google Scholar 

  25. Ashton, E. H. & Spence, T. F. Age changes in the cranial capacity and foramen magnum of hominoids. Proc. Zool. Soc. Lond. 130, 169–180 (1958)

    Article  Google Scholar 

  26. Kondo, O. et al. in Current Trends in Dental Morphology Research (ed. E. Żądzińska) 243–255 (Univ. Lodz Press, 2005)

    Google Scholar 

  27. Boughner, J. C. & Dean, M. C. Does space in the jaw influence the timing of molar crown initiation? A model using baboons and great apes. J. Hum. Evol. 46, 253–275 (2004)

    Article  Google Scholar 

  28. Tompkins, R. L. Relative dental development of Upper Pleistocene hominids compared to human population variability. Am. J. Phys. Anthropol. 99, 103–118 (1996)

    Article  CAS  PubMed  Google Scholar 

  29. Wolpoff, M. H. The Krapina dental remains. Am. J. Phys. Anthropol. 50, 67–114 (1979)

    Article  Google Scholar 

  30. Mazurier, A., Volpato, V. & Macchiarelli, R. Improved noninvasive microstructural analysis of fossil tissues by means of SR-microtomography. Appl. Phys. A 83, 229–233 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bravin, C. Nemoz and P. Tafforeau for collaboration at the ESRF beamline ID17; the Centre de Microtomographie (CdMT) at the University of Poitiers; the Department of Physics at the University of Bologna; and P. Bayle, A. Bergeret, P. Sardini, V. Volpato and P. Walton for technical assistance. The research was supported by the French CNRS, the EU TNT Project (to R.M.), the Région Poitou-Charentes (to A.M.), and The Leverhulme Trust and The Royal Society (to C.D.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figures 1–5 and Supplementary Tables. (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macchiarelli, R., Bondioli, L., Debénath, A. et al. How Neanderthal molar teeth grew. Nature 444, 748–751 (2006). https://doi.org/10.1038/nature05314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05314

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing