Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights into the dynamics of mantle plumes from uranium-series geochemistry

Abstract

The long-standing paradigm that hotspot volcanoes such as Hawaii or Iceland represent the surface expression of mantle plumes—hot, buoyant upwelling regions beneath the Earth’s lithosphere—has recently been the focus of controversy. Whether mantle plumes exist or not is pivotal for our understanding of the thermal, dynamic and compositional evolution of the Earth’s mantle. Here we show that uranium-series disequilibria measured in hotspot lavas indicate that hotspots are indeed associated with hot and buoyant upwellings and that weaker (low buoyancy flux) hotspots such as Iceland and the Azores are characterized by lower excess temperatures than stronger hotspots such as Hawaii. This direct link between buoyancy flux and mantle temperature is evidence for the existence of mantle plumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: U-series activity ratios versus buoyancy fluxes for recent hotspot lavas.
Figure 2: U-series activity ratios as a function of distance from the centre of hotspots.
Figure 3: Relationship between U-series activity ratios in erupted melts and mantle upwelling velocity.
Figure 4: Models of U-series activity ratios versus buoyancy flux for recent hotspot lavas.
Figure 5: 206 Pb/ 204 Pb as a function of the distance from the centre of the Azores hotspot.

Similar content being viewed by others

References

  1. Foulger, G. R. et al. Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle. Geophys. J. Int. 146, 504–530 (2001)

    Article  ADS  Google Scholar 

  2. Meibom, A. et al. Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?. Earth Planet. Sci. Lett. 208, 197–204 (2003)

    Article  ADS  CAS  Google Scholar 

  3. McKenzie, D. et al. Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochim. Cosmochim. Acta 68, 2699–2724 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Bourdon, B., Joron, J. L., Claude-Ivanaj, C. & Allegre, C. J. U-Th-Pa-Ra systematics for the Grande Comore volcanics: melting processes in an upwelling plume. Earth Planet. Sci. Lett. 164, 119–133 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Bourdon, B. & Sims, K. W. W. in U-series Geochemistry (eds Bourdon, B., Lundstrom, C., Henderson, G. & Turner, S. P.) 215–253 (Mineralogical Society of America, 2003)

    Book  Google Scholar 

  6. Bourdon, B., Turner, S. P. & Ribe, N. M. Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth Planet. Sci. Lett. 239, 42–56 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Kokfelt, T. F., Hoernle, K. & Hauff, F. Upwelling and melting of the Iceland plume from radial variation of 238U-230Th disequilibria in postglacial volcanic rocks. Earth Planet. Sci. Lett. 214, 167–186 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Sims, K. W. W. et al. Porosity of the melting zone and variations in the solid mantle upwelling rates beneath Hawaii: Inferences from 238U-230Th-226Ra, and 235U-231Pa disequilibria. Geochim. Cosmochim. Acta 63, 4119–4138 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Sigmarsson, O., Carn, S. & Carracedo, J. Systematics of U-series nuclides in primitive lavas from the 1730–36 eruption on Lanzarote, Canary islands, implications for the role of garnet-pyroxenite during oceanic basalt formations. Earth Planet. Sci. Lett. 162, 137–151 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Stracke, A., Salters, V. J. M. & Sims, K. W. W. Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics. Geochem. Geophys. Geosyst. 1 doi: 10.1029/1999GC000013 (1999)

  11. Stracke, A. et al. The dynamics of melting beneath Theistareykir, northern Iceland. Geochem. Geophys. Geosyst. 4 8513 doi: 10.1029/2002GC000347 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Stracke, A., Bourdon, B. & McKenzie, D. Melt extraction in the Earth’s mantle: Constraints from U-Th-Pa-Ra studies in oceanic basalts. Earth Planet. Sci. Lett. 244, 97–112 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Bourdon, B., Langmuir, C. H. & Zindler, A. Ridge-hotspot interaction along the Mid-Atlantic Ridge between 37°30' and 40°30'N: The U-Th disequilibrium evidence. Earth Planet. Sci. Lett. 142, 175–189 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Turner, S., Hawkesworth, C., Rogers, N. & King, P. U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chem. Geol. 139, 145–164 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Sims, K. W. W. et al. Mechanisms of magma generation beneath Hawaii and midocean ridges—uranium/thorium and samarium/neodymium isotopic evidence. Science 267, 508–512 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lundstrom, C. C., Hoernle, K. & Gill, J. B. U-series disequilibria in volcanic rocks from the Canary Islands: Plume versus lithospheric melting. Geochim. Cosmochim. Acta 67, 4153–4177 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Vigier, N., Bourdon, B., Joron, J. L. & Allègre, C. J. U-decay series and trace element systematics in the 1978 eruption of Ardoukoba, Asal rift: timescale of magma crystallization. Earth Planet. Sci. Lett. 174, 81–97 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Chabaux, F. & Allègre, C. J. 238U-230Th-226Ra disequilibria in volcanics—a new insight into melting conditions. Earth Planet. Sci. Lett. 126, 61–74 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Maclennan, J., McKenzie, D. & Groenvold, K. Plume-driven upwelling under central Iceland. Earth Planet. Sci. Lett. 2001, 67–82 (2002)

    Google Scholar 

  20. DePaolo, D. J. & Stolper, E. M. Models of Hawaiian volcano growth and plume structure. Implications of results from the Hawaii Scientific Drilling Project. J. Geophys. Res. 101, 11643–11654 (1996)

    Article  ADS  Google Scholar 

  21. Moreira, M. et al. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett. 169, 189–205 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Richardson, C. & McKenzie, D. Radioactive disequilibria from 2D models of melt generation by plumes and ridges. Earth Planet. Sci. Lett. 128, 425–437 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Albers, M. & Christensen, U. R. The excess temperature of plumes rising from the core-mantle boundary. Geophys. Res. Lett. 23, 3567–3570 (1996)

    Article  ADS  Google Scholar 

  24. Olson, P., Schubert, G. & Anderson, C. Structure of axisymmetric plumes. J. Geophys. Res. 98, 6829–6844 (1993)

    Article  ADS  Google Scholar 

  25. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Boehler, R., Chopelas, A. & Zerr, A. Temperature and chemistry of the core-mantle boundary. Chem. Geol. 120, 199–206 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Farnetani, C. G. Excess temperature of mantle plumes: The role of chemical stratification across D. Geophys. Res. Lett. 24, 1583–1586 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Sleep, N. H. Hotspots and mantle plumes—some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990)

    Article  ADS  Google Scholar 

  29. Schilling, J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352, 397–403 (1991)

    Article  ADS  Google Scholar 

  30. Ribe, N. M., Christensen, U. R. & Theissing, J. The dynamics of plume ridge interaction, 1: Ridge centered plumes. Earth Planet. Sci. Lett. 134, 155–168 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Ito, G., Shen, Y., Hirth, G. & Wolfe, C. J. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett. 165, 81–96 (1999)

    Article  ADS  CAS  Google Scholar 

  32. Asimow, P. D., Dixon, J. E. & Langmuir, C. H. A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic ridge near the Azores. Geochem. Geophys.Geosyst. 5 24 doi: 10.1029/2003GC000568 (2004)

    Article  CAS  Google Scholar 

  33. Asimow, P. D. & Langmuir, C. H. The importance of water to oceanic mantle melting regimes. Nature 421, 815–820 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Wolfe, C., Bjarnason, I. T., Van Decar, J. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997)

    Article  ADS  CAS  Google Scholar 

  36. Murton, B. J., Taylor, R. N. & Thirlwall, M. F. Plume-ridge interaction: a geochemical perspective from the Reykjanes ridge. J. Petrol. 43, 1987–2012 (2002)

    Article  ADS  CAS  Google Scholar 

  37. Peate, D. W. et al. 238U-230Th constraints on mantle upwelling and plume-ridge interaction along the Reykjanes ridge. Earth Planet. Sci. Lett. 187, 259–272 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Ribe, N. M. The dynamics of plume ridge interaction. 2: Off-ridge plumes. J. Geophys. Res. 101, 19195–16204 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. McKenzie for the support of A.S. during his visit to IPGP. A.E.S.’s visit to Paris was supported by IPGP funds. We also thank D. McKenzie, A. Davaille, M. Moreira and C. Farnetani for numerous discussions about plumes. We are grateful to P. Olson and T. Kokfelt for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Bourdon.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figure 1 and Supplementary Table 1. Supplementary Figure 1 shows the excess temperature in plumes at the base of the lithosphere as a function of the buoyancy flux. Supplementary Table 1 describes the parameters used in the modelling and their typical values. This file also contains a description of the model. (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourdon, B., Ribe, N., Stracke, A. et al. Insights into the dynamics of mantle plumes from uranium-series geochemistry. Nature 444, 713–717 (2006). https://doi.org/10.1038/nature05341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05341

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing