Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts

Abstract

The terrestrial sediment record indicates that the Earth’s climate varied drastically in the Precambrian era (before 550 million years ago), ranging from surface temperatures similar to or higher than today’s to global glaciation events1. The most continuous record of sea surface temperatures of that time has been derived from variations in oxygen isotope ratios of cherts (siliceous sediments)2, but the long-term cooling of the oceans inferred from those data3,4,5 has been questioned because the oxygen isotope signature could have been reset through the exchange with hydrothermal fluids after deposition of the sediments6. Here we show that the silicon isotopic composition of cherts more than 550 million years old shows systematic variations with age that support the earlier conclusion of long-term ocean cooling and exclude post-depositional exchange as the main source of the isotopic variations. In agreement with other lines of evidence1,7, a model of the silicon cycle in the Precambrian era shows that the observed silicon isotope variations imply seawater temperature changes from about 70 °C 3,500 million years ago to about 20 °C 800 million years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation in chert δ 18 O values with geological age.
Figure 2: Variation of δ 30 Si with δ 18 O values and geological age for samples with the highest δ 18 O values.
Figure 3: Variations of δ 30 Si with δ 18 O values for samples with low δ 18 O values (δ 18 O < δ 18 O KL  - 6‰).
Figure 4: Variations in oceanic temperatures modelled from the δ30Si values from cherts (grey area) compared with the curve proposed from δ18O values3.

Similar content being viewed by others

References

  1. Lowe, D. R. & Tice, M. N. Geologic evidences for Archean atmospheric and climatic evolution: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32, 493–496 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Knauth, L. P. & Epstein, S. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta 40, 1095–1108 (1976)

    Article  ADS  CAS  Google Scholar 

  3. Knauth, L. P. & Lowe, D. R. Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years) Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth Planet. Sci. Lett. 41, 209–222 (1978)

    Article  ADS  CAS  Google Scholar 

  4. Knauth, L. P. & Lowe, D. R. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566–580 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Knauth, L. P. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005)

    Article  Google Scholar 

  6. Degens, E. T. & Epstein, S. Relationship between 18O/16O ratios in coexisting carbonates, cherts and diatomites. Bull. Am. Assoc. Petrol. Geol. 46, 534–542 (1962)

    CAS  Google Scholar 

  7. Kasting, J. F. Methane and climate during the Precambrian era. Precambr. Res. 137, 119–129 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: A record for the evolution of atmosphere chemistry?. Precambr. Res. 96, 63–82 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Schopf, J. W. & Klein, C. (eds). The Proterozoic Biosphere (Cambridge Univ. Press, New York, 1992)

  10. De La Rocha, C. L., Brzezinski, M. A. & DeNiro, M. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998)

    Article  ADS  CAS  Google Scholar 

  11. De La Rocha, C. L., Brzezinski, M. A. & DeNiro, M. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Acta 61, 2467–2477 (2000)

    Article  ADS  Google Scholar 

  12. Ding, T. P. et al. Silicon Isotope Geochemistry (Geological Publishing House, Beijing, 1996)

  13. Jiang, S-Y., Palmer, M. R., Peng, Q-M. & Yang, J-H. Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from Houxianyu borate deposit, eastern Liaoning, China. Chem. Geol. 135, 189–211 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Kolodny, Y. & Epstein, S. Stable isotope geochemistry of deep sea cherts. Geochim. Cosmochim. Acta 40, 1195–1209 (1976)

    Article  ADS  CAS  Google Scholar 

  15. De La Rocha, C. L., Brzezinski, M. A. & DeNiro, M. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim. Cosmochim. Acta 61, 5051–5056 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Ding, Y., Wan, D., Wang, C. & Zhang, F. F. Silicon isotope compositions of dissolved silicon suspended in the Yangtze River, China. Geochim. Cosmochim. Acta 68, 205–216 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Tréguer, P. et al. The silica balance in the world ocean: a reestimate. Science 268, 375–379 (1995)

    Article  ADS  Google Scholar 

  18. Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Von Damm, K. L., Bischoff, J. L. & Rosenbauer, R. J. Quartz solubility in hydrothermal seawater—an experimental study and equation describing quartz solubility for up to 0.5N NaCl solutions. Am. J. Sci. 291, 977–1007 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Rimstidt, J. D. & Barnes, H. L. The kinetics of silica water reactions. Geochim. Cosmochim. Acta 44, 1683–1699 (1980)

    Article  ADS  CAS  Google Scholar 

  21. Gunnarsson, I. & Arnorsson, S. Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0° to 350°C at Psat . Geochim. Cosmochim. Acta 64, 2295–2307 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Douthitt, C. B. The geochemistry of the stable isotopes of silicon. Geochim. Cosmochim. Acta 46, 1449–1458 (1982)

    Article  ADS  CAS  Google Scholar 

  23. Basile-Doelsch, I., Meunier, J-D. & Parron, C. Another continental pool in the terrestrial silicon cycle. Nature 433, 399–402 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Ziegler, K., Chadwick, O. A., Brzezinski, M. A. & Kelly, E. F. Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim. Cosmochim. Acta 69, 4597–4610 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Schopf, J. W. (ed.). Earth’s Earliest Biosphere: its Origin and Evolution (Princeton Univ. Press, Princeton, New Jersey, 1983)

  26. Allison, C. W. & Awramik, S. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, Northwest Canada. Precambr. Res. 43, 253–294 (1989)

    Article  ADS  Google Scholar 

  27. Karpeta, W. P. Bedded cherts in the Rietgat Formation, Hartbeesfontein, South Africa: a late Archean to early Proterozoic magadiitic alkaline playa lake deposit?. South Afr. J. Geol. 92, 29–36 (1989)

    Google Scholar 

  28. Awramik, S. M. et al. Prokaryotic and eukaryotic microfossils from a Proterozoic–Phanerozoic transition in China. Nature 315, 655–658 (1985)

    Article  ADS  Google Scholar 

  29. Karhu, J. & Epstein, S. The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochim. Cosmochim. Acta 50, 1745–1756 (1986)

    Article  ADS  CAS  Google Scholar 

  30. Rollion-Bard, C. & Chaussidon, M. France-Lanord, Ch. pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sci. Lett. 215, 275–288 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Knauth for constructive and critical reviews, which greatly helped in clarifying the text with regard to the qualitative significance of the thermometric equations proposed for silicon isotopes. We thank W. Schopf, S. Awramik, P. Knauth and the late S. Epstein for providing an unlimited and disinterested access to the most representative samples of their own collections. Author Contributions Both authors contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Robert.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Tables, Supplementary Discussion and Supplementary Figures. (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, F., Chaussidon, M. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969–972 (2006). https://doi.org/10.1038/nature05239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05239

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing