Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The effect of water on the electrical conductivity of olivine

Abstract

It is well known that water (as a source of hydrogen) affects the physical and chemical properties of minerals—for example, plastic deformation1,2,3 and melting temperature4—and accordingly plays an important role in the dynamics and geochemical evolution of the Earth. Estimating the water content of the Earth’s mantle by direct sampling provides only a limited data set from shallow regions (<200 km depth)5. Geophysical observations such as electrical conductivity are considered to be sensitive to water content6, but there has been no experimental study to determine the effect of water on the electrical conductivity of olivine, the most abundant mineral in the Earth’s mantle. Here we report a laboratory study of the dependence of the electrical conductivity of olivine aggregates on water content at high temperature and pressure. The electrical conductivity of synthetic polycrystalline olivine was determined from a.c. impedance measurements at a pressure of 4 GPa for a temperature range of 873–1,273 K for water contents of 0.01–0.08 wt%. The results show that the electrical conductivity is strongly dependent on water content but depends only modestly on temperature. The water content dependence of conductivity is best explained by a model in which electrical conduction is due to the motion of free protons. A comparison of the laboratory data with geophysical observations7,8,9,10 suggests that the typical oceanic asthenosphere contains 10-2 wt% water, whereas the water content in the continental upper mantle is less than 10-3 wt%.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sample assembly for electrical conductivity measurements at high pressure.
Figure 2: Electrical conductivity versus inverse temperature and water content.
Figure 3: Comparison of the conductivity of hydrogen-bearing olivine with geophysically inferred electrical conductivity for the asthenosphere.

Similar content being viewed by others

References

  1. Karato, S. & Jung, H. Effects of pressure on high-temperature dislocation creep in olivine polycrystals. Phil. Mag. A 83, 401–414 (2003)

    Article  CAS  Google Scholar 

  2. Karato, S., Paterson, M. S. & Fitz Gerald, J. D. Rheology of synthetic olivine aggregates: influence of grain-size and water. J. Geophys. Res. 91, 8151–8176 (1986)

    Article  CAS  ADS  Google Scholar 

  3. Mei, S. & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates, 1. Diffusion creep regime. J. Geophys. Res. 105, 21457–21469 (2000)

    Article  CAS  ADS  Google Scholar 

  4. Kushiro, I., Syono, Y. & Akimoto, S. Melting of a peridotite nodule at high pressures and high water pressures. J. Geophys. Res. 73, 6023–6029 (1968)

    Article  CAS  ADS  Google Scholar 

  5. Bell, D. R. & Rossman, G. R. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science 255, 1391–1397 (1992)

    Article  CAS  ADS  Google Scholar 

  6. Karato, S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273 (1990)

    Article  CAS  ADS  Google Scholar 

  7. Olsen, N. Long-period (30 days - 1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys. J. Int. 138, 179–187 (1999)

    Article  ADS  Google Scholar 

  8. Tarits, P., Hautot, S. & Perrier, F. Water in the mantle: Results from electrical conductivity beneath the French Alps. Geophys. Res. Lett. 31 doi: 10.1029/2003GL019277 (2004)

  9. Evans, R. L. et al. Geophysical evidence from the MELT area for compositional control on oceanic plates. Nature 437, 249–252 (2005)

    Article  CAS  ADS  Google Scholar 

  10. Lizarrale, D., Chave, A., Hirth, G. & Schultz, A. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California cable data. J. Geophys. Res. 100, 17837–17854 (1995)

    Article  ADS  Google Scholar 

  11. Baba, K., Chave, A. D., Evans, R. L., Hirth, G. & Randall, L. Mantle dynamics beneath the East Pacific Rise at 17°S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiments. J. Geophys. Res. 111 doi: 10.1029/2004JB003598 (2006)

  12. Simpson, F. & Tommasi, A. Hydrogen diffusivity and electrical anisotropy of a peridotite mantle. Geophys. J. Int. 160, 1092–1102 (2005)

    Article  CAS  ADS  Google Scholar 

  13. Hirth, G., Evans, R. L. & Chave, A. D. Comparison of continental and oceanic mantle electrical conductivity: Is Archean lithosphere dry?. Geochem. Geophys. Geosyst. 1 doi: 10.1029/2000GC000048 (2000)

  14. Huang, X., Xu, Y. & Karato, S. Water content of the mantle transition zone from the electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749 (2005)

    Article  CAS  ADS  Google Scholar 

  15. Paterson, M. S. The determination of hydroxyl by infrared absorption in quartz, silicate glass and similar materials. Bull. Mineral. 105, 20–29 (1982)

    CAS  Google Scholar 

  16. Xu, Y., Poe, B. T., Shankland, T. J. & Rubie, D. C. Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science 280, 1415–1418 (1998)

    Article  CAS  ADS  Google Scholar 

  17. Wang, D. Studies on Electrical Properties of Minerals and Rocks Under Defined Thermodynamic Conditions. Ph.D. thesis, Chinese Acad. Sci. (2004)

  18. Karato, S. Lattice Defects and Transport Properties of Olivine. M.Sc. thesis, Univ. Tokyo. (1974)

  19. Schock, R. N., Duba, A. G. & Shankland, T. J. Electrical conduction in olivine. J. Geophys. Res. 94, 5829–5839 (1989)

    Article  CAS  ADS  Google Scholar 

  20. Constable, S., Shankland, T. G. & Duba, A. The electrical conductivity of an isotropic olivine mantle. J. Geophys. Res. 97, 3397–3404 (1992)

    Article  ADS  Google Scholar 

  21. Xu, Y., Shankland, T. J. & Duba, A. G. Pressure effect on electrical conductivity of mantle olivine. Phys. Earth Planet. Inter. 118, 149–161 (2000)

    Article  CAS  ADS  Google Scholar 

  22. Kohlstedt, D. L. & Mackwell, S. J. Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem. 207, 147–162 (1998)

    Article  CAS  Google Scholar 

  23. Hashin, Z. & Shtrikman, S. A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)

    Article  CAS  ADS  Google Scholar 

  24. Hier-Majumder, S., Anderson, I. M. & Kohlstedt, D. L. Influence of protons on Fe-Mg interdiffusion in olivine. J. Geophys. Res. 110 doi: 10.1029/2004JB003292 (2005)

  25. Bolfan-Casanova, N. Water in the Earth’s mantle. Mineral. Mag. 69, 229–257 (2005)

    Article  CAS  Google Scholar 

  26. Simpson, F. Intensity and direction of lattice-preferred orientation of olivine: are electrical and seismic anisotropies of the Australian mantle reconcilable?. Earth Planet. Sci. Lett. 203, 535–547 (2002)

    Article  CAS  ADS  Google Scholar 

  27. Gatzemeier, A. & Moorkamp, M. 3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms. Phys. Earth Planet. Inter. 149, 225–242 (2005)

    Article  CAS  ADS  Google Scholar 

  28. Stolper, E. M. Speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620 (1982)

    Article  CAS  ADS  Google Scholar 

  29. Kohlstedt, D. L., Keppler, H. & Rubie, D. C. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 . Contrib. Mineral. Petrol. 123, 345–357 (1996)

    Article  CAS  ADS  Google Scholar 

  30. Ichiki, M. et al. Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys. Res. Lett. 28, 3773–3776 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z. Jing, Z. Jiang and I. Katayama provided the technical assistance that made this research possible. T. Kawazoe was most helpful with the error estimates. This work was supported by the NSF of China and the NSF of the United States. Author Contributions S.-i.K. supervised the whole project and completed the paper. The experimental measurements of conductivity and the data analysis were made largely by D.W. and M.M. in collaboration with Y.X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichiro Karato.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes 1

A summary of experimental results. All experiments were conducted at 4 GPa. is water content, T is temperature and σ is electrical conductivity. (DOC 47 kb)

Supplementary Notes 2

A broad peak at ~3,400 cm-1 from the original spectrum is used to estimate the water content in the grains in each sample. (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Mookherjee, M., Xu, Y. et al. The effect of water on the electrical conductivity of olivine. Nature 443, 977–980 (2006). https://doi.org/10.1038/nature05256

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05256

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing