Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere

Abstract

The oceanic asthenosphere is observed to have high electrical conductivity, which is highly anisotropic in some locations1,2. In the directions parallel and normal to the plate motion, the conductivity is of the order of 10-1 and 10-2 S m-1, respectively, which cannot be explained by the conductivity of anhydrous olivine2. But because hydrogen can be incorporated in olivine at mantle pressures3,4,5, this observation has been attributed to olivine hydration, which might cause anisotropically high conductivity by proton migration1,2,6,7. To examine this hypothesis, here we report the effect of water on electrical conductivity and its anisotropy for hydrogen-doped and undoped olivine at 500–1,500 K and 3 GPa. The hydrous olivine has much higher conductivity and lower activation energy than anhydrous olivine in the investigated temperature range. Nevertheless, extrapolation of the experimental results suggests that conductivity of hydrous olivine at the top of the asthenosphere should be nearly isotropic and only of the order of 10-2 S m-1. Our data indicate that the hydration of olivine cannot account for the geophysical observations2, which instead may be explained by the presence of partial melt elongated in the direction of plate motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical conductivity of olivine as a function of reciprocal temperature.
Figure 2: Comparison of laboratory data on electrical conductivity of hydrous olivine as a function of H 2 O content with the geophysically observed electrical conductivity in the upper mantle beneath the Pacific.

Similar content being viewed by others

References

  1. Karato, S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273 (1990)

    Article  CAS  ADS  Google Scholar 

  2. Evans, R. L. et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437, 249–252 (2005)

    Article  CAS  ADS  Google Scholar 

  3. Bai, Q. & Kohlstedt, D. L. Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature 357, 672–674 (1992)

    Article  CAS  ADS  Google Scholar 

  4. Bell, D. R. & Rothman, G. R. Water in the earth’s mantle: the role of nominally anhydrous minerals. Science 255, 1391–1397 (1992)

    Article  CAS  ADS  Google Scholar 

  5. Kohlstedt, D. L., Keppler, H. & Rubie, D. C. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 . Contrib. Mineral. Petrol. 123, 345–357 (1996)

    Article  CAS  ADS  Google Scholar 

  6. Mackwell, S. J. & Kohlstedt, D. L. Diffusion of hydrogen in olivine: implications for water in mantle. J. Geophys. Res. 95, 5079–5088 (1990)

    Article  ADS  Google Scholar 

  7. Kohlstedt, D. L. & Mackwell, S. J. Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem. 207, 147–162 (1998)

    Article  CAS  Google Scholar 

  8. Huang, X., Xu, Y. & Karato, S. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749 (2005)

    Article  CAS  ADS  Google Scholar 

  9. Xu, Y., Shankland, T. J. & Duba, A. G. Pressure effect on electrical conductivity of mantle olivine. Phys. Earth Planet. Inter. 118, 149–161 (2000)

    Article  CAS  ADS  Google Scholar 

  10. Shankland, T. J. & Duba, A. G. Standard electrical conductivity of isotropic, homogeneous olivine in the temperature range 1200°-1500°C. Geophys. J. Int. 103, 25–31 (1990)

    Article  ADS  Google Scholar 

  11. Wanamaker, B. J. & Duba, A. G. Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxene-buffered conditions and implications for defect equilibria. J. Geophys. Res. 98, 489–500 (1993)

    Article  CAS  ADS  Google Scholar 

  12. Hae, R., Ohtani, E., Kubo, T., Koyama, T. & Utada, H. Hydrogen diffusivity in wadsleyite and water distribution in the mantle transition zone. Earth Planet. Sci. Lett. 243, 141–148 (2006)

    Article  CAS  ADS  Google Scholar 

  13. Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236, 167–181 (2005)

    Article  CAS  ADS  Google Scholar 

  14. Mott, N. F. & Gurney, R. W. Electronic Processes in Ionic Crystals (Oxford Univ. Press, Oxford, 1948)

  15. Wood, B. J., Btyndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990)

    Article  CAS  ADS  Google Scholar 

  16. Williams, H. M. et al. Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304, 1656–1659 (2004)

    Article  CAS  ADS  Google Scholar 

  17. Utada, H., Koyama, T., Shimizu, H. & Chave, A. D. A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys. Res. Lett. 30 1194 doi: 10.1029/2002GL016902 (2003)

    Article  ADS  Google Scholar 

  18. Lizzarralde, D., Chave, A. D., Hirth, G. & Schultz, A. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii to California submarine cable data. J. Geophys. Res. 100, 17837–17854 (1995)

    Article  ADS  Google Scholar 

  19. The MELT seismic team. Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science 280, 1215–1218 (1998)

  20. Jung, H. & Karato, S. Water-induced fabric transitions in olivine. Science 293, 1460–1463 (2001)

    Article  CAS  ADS  Google Scholar 

  21. Presnall, D. C., Simmons, C. L. & Porath, H. Change of electrical conductivity of a synthetic basalt during melting. J. Geophys. Res. 77, 5665–5672 (1972)

    Article  CAS  ADS  Google Scholar 

  22. Waff, H. S. & Bulau, J. R. Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic conditions. J. Geophys. Res. 84, 6109–6114 (1979)

    Article  ADS  Google Scholar 

  23. Roberts, J. J. & Tyburczy, J. A. Partial-melt electrical conductivity: Influence of melt composition. J. Geophys. Res. 104, 7055–7066 (1999)

    Article  CAS  ADS  Google Scholar 

  24. Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle. J. Geophys. Res. 91, 9367–9382 (1986)

    Article  CAS  ADS  Google Scholar 

  25. Kushiro, I. et al. Melting of a peridotite nodule at high pressures and high water pressures. J. Geophys. Res. 73, 6023–6029 (1968)

    Article  CAS  ADS  Google Scholar 

  26. Wyllie, P. J. & Huang, W-I. Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature 257, 297–299 (1975)

    Article  CAS  ADS  Google Scholar 

  27. Wang, W. & Takahashi, E. Subsolidus and melting experiments of K-doped peridotite KLB-1 to 27 GPa: Its geophysical and geochemical implications. J. Geophys. Res. 105, 2855–2868 (2000)

    Article  CAS  ADS  Google Scholar 

  28. Holtzman, B. K. et al. Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301, 1227–1230 (2003)

    Article  CAS  ADS  Google Scholar 

  29. Baba, K., Chave, A. D., Evans, R. L., Hirth, G. & Mckie, R. L. Mantle dynamics beneath the East Pacific Rise at 17°S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J. Geophys. Res. 111 B02101 doi: 10.1029/2004JB003598 (2006)

    Article  ADS  Google Scholar 

  30. Dunn, R. A. & Forsyth, D. W. Imaging the transition between the region of mantle melt generation and the crustal magma chamber with short-period Love wave propagation along the southern East Pacific Rise. J. Geophys. Res. 108 B72352 doi: 10.1029/2002JB002217 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Baba, K. Fujita, M. Ichiki, T. Koyama, E. Ito and D. Yamazaki for discussions, D. Kohlstedt for comments and suggestions that improved manuscripts, and C. Oka for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yoshino.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Discussion (a cause of lower activation energy for proton conductivity) and Supplementary Figure 1 (Electrical conductivity of hydrous olivine single crystals as a function of reciprocal temperature). (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, T., Matsuzaki, T., Yamashita, S. et al. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443, 973–976 (2006). https://doi.org/10.1038/nature05223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05223

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing