Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae

Abstract

Proper histone levels are critical for transcription, chromosome segregation, and other chromatin-mediated processes1–7. In Saccharomyces cerevisiae, the histones H2A and H2B are encoded by two gene pairs, named HTA1-HTB1 and HTA2-HTB2 (ref. 8). Previous studies have demonstrated that when HTA2-HTB2 is deleted, HTA1-HTB1 dosage compensates at the transcriptional level4,9. Here we show that a different mechanism of dosage compensation, at the level of gene copy number, can occur when HTA1-HTB1 is deleted. In this case, HTA2-HTB2 amplifies via creation of a new, small, circular chromosome. This duplication, which contains 39 kb of chromosome II, includes HTA2-HTB2, the histone H3-H4 locus HHT1-HHF1, a centromere and origins of replication. Formation of the new chromosome occurs by recombination between two Ty1 retrotransposon elements that flank this region. Following meiosis, recombination between these two particular Ty1 elements occurs at a greatly elevated level in hta1-htb1Δ mutants, suggesting that a decreased level of histones H2A and H2B specifically stimulates this amplification of histone genes. Our results demonstrate another mechanism by which histone gene dosage is controlled to maintain genomic integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of HTA2-HTB2 amplification in hta1-htb1Δ.
Figure 2: Analysis of newly constructed hta1-htb1Δ strains.
Figure 3: Tests for the presence of a 39 kb circular chromosome.
Figure 4: Characterization of the recombination event to amplify histone genes.

Similar content being viewed by others

References

  1. Meeks-Wagner, D. & Hartwell, L. H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44, 43–52 (1986)

    Article  CAS  Google Scholar 

  2. Gunjan, A. & Verreault, A. A. Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae.. Cell 115, 537–549 (2003)

    Article  CAS  Google Scholar 

  3. Norris, D., Dunn, B. & Osley, M. A. The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae.. Science 242, 759–761 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Norris, D. & Osley, M. A. The two gene pairs encoding H2A and H2B play different roles in the Saccharomyces cerevisiae life cycle. Mol. Cell. Biol. 7, 3473–3481 (1987)

    Article  CAS  Google Scholar 

  5. Han, M., Chang, M., Kim, U. J. & Grunstein, M. Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription. Cell 48, 589–597 (1987)

    Article  CAS  Google Scholar 

  6. Clark-Adams, C. D., Norris, D., Osley, M. A., Fassler, J. S. & Winston, F. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2, 150–159 (1988)

    Article  CAS  Google Scholar 

  7. Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo.. Cell 55, 1137–1145 (1988)

    Article  CAS  Google Scholar 

  8. Hereford, L., Fahrner, K., Woolford, J., Rosbash, M. & Kaback, D. B. Isolation of yeast histone genes H2A and H2B. Cell 18, 1261–1271 (1979)

    Article  CAS  Google Scholar 

  9. Moran, L., Norris, D. & Osley, M. A. A yeast H2A–H2B promoter can be regulated by changes in histone gene copy number. Genes Dev. 4, 752–763 (1990)

    Article  CAS  Google Scholar 

  10. Rykowski, M. C., Wallis, J. W., Choe, J. & Grunstein, M. Histone H2B subtypes are dispensable during the yeast cell cycle. Cell 25, 477–487 (1981)

    Article  CAS  Google Scholar 

  11. Kolodrubetz, D., Rykowski, M. C. & Grunstein, M. Histone H2A subtypes associate interchangeably in vivo with histone H2B subtypes. Proc. Natl Acad. Sci. USA 79, 7814–7818 (1982)

    Article  ADS  CAS  Google Scholar 

  12. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992)

    Article  CAS  Google Scholar 

  13. Hirschhorn, J. N., Bortvin, A. L., Ricupero-Hovasse, S. L. & Winston, F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo.. Mol. Cell. Biol. 15, 1999–2009 (1995)

    Article  CAS  Google Scholar 

  14. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Struhl, K., Stinchcomb, D. T., Scherer, S. & Davis, R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl Acad. Sci. USA 76, 1035–1039 (1979)

    Article  ADS  CAS  Google Scholar 

  16. Kupiec, M. & Petes, T. D. Allelic and ectopic recombination between Ty elements in yeast. Genetics 119, 549–559 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kupiec, M. & Petes, T. D. Meiotic recombination between repeated transposable elements in Saccharomyces cerevisiae.. Mol. Cell. Biol. 8, 2942–2954 (1988)

    Article  CAS  Google Scholar 

  18. Roeder, G. S. Unequal crossing-over between yeast transposable elements. Mol. Gen. Genet. 190, 117–121 (1983)

    Article  CAS  Google Scholar 

  19. Ben-Aroya, S., Mieczkowski, P. A., Petes, T. D. & Kupiec, M. The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae.. Mol. Cell 15, 221–231 (2004)

    Article  CAS  Google Scholar 

  20. Petes, T. D. Meiotic recombination hot spots and cold spots. Nature Rev. Genet. 2, 360–369 (2001)

    Article  CAS  Google Scholar 

  21. Wu, X. & Haber, J. E. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87, 277–285 (1996)

    Article  CAS  Google Scholar 

  22. Ercan, S., Reese, J. C., Workman, J. L. & Simpson, R. T. Yeast recombination enhancer is stimulated by transcription activation. Mol. Cell. Biol. 25, 7976–7987 (2005)

    Article  CAS  Google Scholar 

  23. Zeyl, C. Capturing the adaptive mutation in yeast. Res. Microbiol. 155, 217–223 (2004)

    Article  CAS  Google Scholar 

  24. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Schwartz, D. C. & Cantor, C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 67–75 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Dudley and D. Helmlinger for helpful comments on the manuscript. We also thank J. Haber and J.-A. Kim for the suggestion of and advice on the HO experiment, and V. Dror for instruction about CHEF gels. We are grateful to A. Gabriel, P. Kaufman, M. A. Osley and T. Petes for sharing unpublished results and for discussions. We thank J. Hirschhorn, whose observations led to this project. This work was supported by a grant from the National Institutes of Health to F.W. and by a National Science Foundation Graduate Fellowship to D.E.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Winston.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Discussion, Supplementary Methods, Supplementary Tables 1–6 and Supplementary Figures 1–7. (PDF 6095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libuda, D., Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443, 1003–1007 (2006). https://doi.org/10.1038/nature05205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05205

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing