Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-period astronomical forcing of mammal turnover

Abstract

Mammals are among the fastest-radiating groups, being characterized by a mean species lifespan of the order of 2.5 million years (Myr)1,2. The basis for this characteristic timescale of origination, extinction and turnover is not well understood. Various studies have invoked climate change to explain mammalian species turnover3,4, but other studies have either challenged or only partly confirmed the climate–turnover hypothesis5,6,7. Here we use an exceptionally long (24.5–2.5 Myr ago), dense, and well-dated terrestrial record of rodent lineages from central Spain, and show the existence of turnover cycles with periods of 2.4–2.5 and 1.0 Myr. We link these cycles to low-frequency modulations of Milankovitch oscillations8, and show that pulses of turnover occur at minima of the 2.37-Myr eccentricity cycle and nodes of the 1.2-Myr obliquity cycle. Because obliquity nodes and eccentricity minima are associated with ice sheet expansion and cooling and affect regional precipitation, we infer that long-period astronomical climate forcing is a major determinant of species turnover in small mammals and probably other groups as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lineage turnover, diversity and mean lifespan per 0.1 Myr.
Figure 3: Rodent turnover, astronomical parameters and climate.
Figure 2: Individual and cross spectra of turnover, eccentricity and obliquity.

Similar content being viewed by others

References

  1. Alroy, J. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26, 707–733 (2000)

    Article  Google Scholar 

  2. Vrba, E. S. & DeGusta, D. Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Phil. Trans. R. Soc. Lond. B 359, 285–293 (2004)

    Article  CAS  Google Scholar 

  3. Vrba, E. S. in Paleoclimate and Evolution, with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 385–424 (Yale, New Haven, 1995)

    Google Scholar 

  4. Barnosky, A. D. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the Northern Rocky Mountains. J. Vertebr. Paleontol. 21, 172–185 (2001)

    Article  Google Scholar 

  5. Prothero, D. R. & Heaton, T. H. Faunal stability during the Early Oligocene climatic crash. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 257–283 (1996)

    Article  Google Scholar 

  6. Alroy, J., Koch, P. L. & Zachos, J. C. in Deep Time: Paleobiology's Perspective (eds Erwin, D. H. & Wing, S. L.) 259–288 (Paleontological Society, Lawrence, 2000)

    Google Scholar 

  7. Barry, J. et al. Faunal and environmental change in the Late Miocene Siwaliks of Northern Pakistan. Paleobiol. Memoirs 3; suppl. to Paleobiology 28, 1–71 (2002).

  8. Laskar, J. et al. A long term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  ADS  Google Scholar 

  9. Bennett, K. D. Evolution and Ecology: the Pace of Life (Cambridge Univ. Press, 1997)

    Google Scholar 

  10. Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Lourens, L. J., Hilgen, F. J., Laskar, J., Shackleton, N. J. & Wilson, D. in A Geological Time Scale 2004 (eds Gradstein, F. M., Ogg, J. G. & Smith, A. G.) 409–440 (Cambridge Univ. Press, 2004)

    Google Scholar 

  12. Lourens, L. J. & Hilgen, F. J. Long-periodic variations in the Earth's obliquity and their relation to third-order eustatic cycles and late Neogene climate change. Quat. Int. 40, 43–52 (1997)

    Article  Google Scholar 

  13. Abdul Aziz, H., Krijgsman, W., Hilgen, F. J., Wilson, D. S. & Calvo, J. P. An astronomical polarity timescale for the late middle Miocene based on cyclic continental sequences. J. Geophys. Res. 108 (B3), 2159–2175 (2003)

    Article  ADS  Google Scholar 

  14. Turco, E., Hilgen, F. J., Lourens, L. J., Shackleton, N. J. & Zachariasse, W. J. Punctuated evolution of global climate cooling during the late Middle to early Late Miocene: high-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography 16, 405–423 (2001)

    Article  ADS  Google Scholar 

  15. Zachos, J., Shackleton, N. J., Revenaugh, J. S., Pälike, H. & Flower, B. P. Climate response to orbital forcing across the Oligocene–Miocene boundary. Science 292, 274–278 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Wade, B. S. & Pälike, H. Oligocene climate dynamics. Paleoceanography 19, doi:10.1029/2004PA001042 (2004)

  17. Westerhold, T., Bickert, U. & Röhl, U. Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 217, 205–222 (2005)

    Article  Google Scholar 

  18. Abels, H. A. et al. Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20, doi:10.1029/2004PA001129 (2005)

  19. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Daams, R. et al. Stratigraphy and sedimentology of the Aragonian (early to middle Miocene) in its type area (north-central Spain). Newslett. Stratigr. 37, 103–139 (1999)

    Article  Google Scholar 

  21. Alonso Zarza, A. M. & Calvo, J. P. Palustrine sedimentation in an episodically subsiding basin: the Miocene of the northern Teruel Graben. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 1–21 (2000)

    Article  Google Scholar 

  22. Abdul Aziz, H., van Dam, J. A., Hilgen, F. J. & Krijgsman, W. Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale. Earth Planet. Sci. Lett. 222, 243–258 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Mein, P., Moissenet, E. & Adrover, R. Biostratigraphie du Néogène supérieur de Teruel. Paleont. Evol. 23, 121–139 (1990)

    Google Scholar 

  24. Leroy, S. & Dupont, L. Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: the pollen record of ODP Site 658. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 295–316 (1994)

    Article  Google Scholar 

  25. Hilgen, F. J., Abdul Aziz, H., Krijgsman, W., Raffi, I. & Turco, E. Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle-Upper Miocene, northern Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 229–264 (2003)

    Article  Google Scholar 

  26. van Dam, J. A. & Weltje, G. J. Reconstruction of the late Miocene climate of Spain using rodent paleocommunity successions: an application of end-member modelling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 151, 267–305 (1999)

    Article  Google Scholar 

  27. van Dam, J. A. Anourosoricini (Soricidae, Mammalia) from the Mediterranean Region: a pre-Quaternary example of recurrent climate-controlled North-South range shifting. J. Paleontol. 78, 741–764 (2004)

    Article  Google Scholar 

  28. Tuenter, E. Modeling Orbital Induced Variations in Circum-Mediterranean Climate. PhD thesis, Utrecht Univ. (2004)

    Google Scholar 

  29. Sheldon, P. R. Plus ça change—a model for stasis and evolution in different environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 209–227 (1996)

    Article  Google Scholar 

  30. Heslop, D. & Dekkers, M. J. Spectral analysis of unevenly spaced climatic time series using CLEAN; signal recovery and derivation of significance levels using a Monte Carlo simulation. Phys. Earth Planet. Inter. 130, 103–116 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Netherlands Organisation for Scientific Research and the Communidad Autónoma de Madrid for financial support, and the Ministerio de Educacion y Ciencia (Madrid), the Diputacion General de Aragón (Zaragoza), and the Fundación Conjunto Paleontológico (Dinópolis, Teruel) for their support with regard to fieldwork campaigns. We also thank H. Abels, H. Dijkstra, D. Heslop, B. Engesser, R. Hengeveld, K. Kuiper, D. Mayhew, E. Sanz, E. Tuenter and G. J. Weltje for discussions and help. We thank I. Lacomba for supplying unpublished data and we are grateful to the late R. Daams for his important contribution to the Central Spanish rodent database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. van Dam.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains information on age calibrations, treatment of age uncertainties and taxonomy, and supplementary references. (PDF 69 kb)

Supplementary Tables

This file contains Supplementary Table 1 with locality information, and Supplementary Table 2 with correlations between marine δ18O events, orbital extremes and rodent turnover peaks. (PDF 45 kb)

Supplementary Figures

This file contains Supplementary Figures 1–7. (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dam, J., Abdul Aziz, H., Ángeles Álvarez Sierra, M. et al. Long-period astronomical forcing of mammal turnover. Nature 443, 687–691 (2006). https://doi.org/10.1038/nature05163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05163

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing