Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A second class of chemosensory receptors in the olfactory epithelium

Abstract

The mammalian olfactory system detects chemicals sensed as odours as well as social cues that stimulate innate responses. Odorants are detected in the nasal olfactory epithelium by the odorant receptor family, whose 1,000 members allow the discrimination of a myriad of odorants. Here we report the discovery of a second family of receptors in the mouse olfactory epithelium. Genes encoding these receptors, called ‘trace amine-associated receptors’ (TAARs), are present in human, mouse and fish. Like odorant receptors, individual mouse TAARs are expressed in unique subsets of neurons dispersed in the epithelium. Notably, at least three mouse TAARs recognize volatile amines found in urine: one detects a compound linked to stress, whereas the other two detect compounds enriched in male versus female urine—one of which is reportedly a pheromone. The evolutionary conservation of the TAAR family suggests a chemosensory function distinct from odorant receptors. Ligands identified for TAARs thus far suggest a function associated with the detection of social cues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taar genes are expressed in subsets of olfactory sensory neurons.
Figure 2: Taar genes are selectively expressed in the olfactory epithelium.
Figure 3: Each Taar gene defines a unique subset of olfactory sensory neurons.
Figure 4: TAARs recognize volatile amines.
Figure 5: mTAAR5 is activated by urine from sexually mature male mice.

Similar content being viewed by others

References

  1. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991)

    Article  CAS  PubMed  Google Scholar 

  2. Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science (McGraw-Hill, New York, 2000)

    Google Scholar 

  3. Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Shepherd, G. M., Chen, W. R. & Greer, C. A. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 165–216 (Oxford Univ. Press, New York, 2004)

    Book  Google Scholar 

  5. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609 (1993)

    Article  CAS  PubMed  Google Scholar 

  7. Vassar, R., Ngai, J. & Axel, R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309–318 (1993)

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X. & Firestein, S. The olfactory receptor gene superfamily of the mouse. Nature Neurosci. 5, 124–133 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Young, J. M. & Trask, B. J. The sense of smell: genomics of vertebrate odorant receptors. Hum. Mol. Genet. 11, 1153–1160 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Godfrey, P. A., Malnic, B. & Buck, L. B. The mouse olfactory receptor gene family. Proc. Natl Acad. Sci. USA 101, 2156–2161 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyer, M. R., Angele, A., Kremmer, E., Kaupp, U. B. & Muller, F. A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc. Natl Acad. Sci. USA 97, 10595–10600 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones, D. T. & Reed, R. R. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244, 790–795 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Spehr, M. et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26, 1961–1970 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halpern, M. & Martinez-Marcos, A. Structure and function of the vomeronasal system: an update. Prog. Neurobiol. 70, 245–318 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. Restrepo, D., Arellano, J., Oliva, A. M., Schaefer, M. L. & Lin, W. Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm. Behav. 46, 247–256 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Boehm, U., Zou, Z. & Buck, L. B. Feedback loops link odor and pheromone signaling with reproduction. Cell 123, 683–695 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123, 669–682 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Fiering, S. N. et al. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 12, 291–301 (1991)

    Article  CAS  PubMed  Google Scholar 

  19. Vassilatis, D. K. et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl Acad. Sci. USA 100, 4903–4908 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewin, A. H. Receptors of mammalian trace amines. AAPS J. 8, E138–E145 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindemann, L. & Hoener, M. C. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol. Sci. 26, 274–281 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Gloriam, D. E. et al. The repertoire of trace amine G-protein-coupled receptors: large expansion in zebrafish. Mol. Phylogenet. Evol. 35, 470–482 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. Borowsky, B. et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl Acad. Sci. USA 98, 8966–8971 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanti, W. B. et al. Discovery of a null mutation in a human trace amine receptor gene. Genomics 82, 531–536 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Montmayeur, J. P., Liberles, S. D., Matsunami, H. & Buck, L. B. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492–498 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Serizawa, S. et al. Negative feedback regulation ensures the one receptor–one olfactory neuron rule in mouse. Science 302, 2088–2094 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Durocher, Y. et al. A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal. Biochem. 284, 316–326 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Krautwurst, D., Yau, K. W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Kajiya, K. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paulos, M. A. & Tessel, R. E. Excretion of β-phenethylamine is elevated in humans after profound stress. Science 215, 1127–1129 (1982)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Snoddy, A. M., Heckathorn, D. & Tessel, R. E. Cold-restraint stress and urinary endogenous β-phenylethylamine excretion in rats. Pharmacol. Biochem. Behav. 22, 497–500 (1985)

    Article  CAS  PubMed  Google Scholar 

  32. Grimsby, J. et al. Increased stress response and β-phenylethylamine in MAOB-deficient mice. Nature Genet. 17, 206–210 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Gavaghan McKee, C. L., Wilson, I. D. & Nicholson, J. K. Metabolic phenotyping of nude and normal (Alpk:ApfCD, C57BL10J) mice. J. Proteome Res. 5, 378–384 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Nishimura, K., Utsumi, K., Yuhara, M., Fujitani, Y. & Iritani, A. Identification of puberty-accelerating pheromones in male mouse urine. J. Exp. Zool. 251, 300–305 (1989)

    Article  CAS  PubMed  Google Scholar 

  35. Price, M. A. & Vandenbergh, J. G. Analysis of puberty-accelerating pheromones. J. Exp. Zool. 264, 42–45 (1992)

    Article  CAS  PubMed  Google Scholar 

  36. Lee, M. B., Storer, M. K., Blunt, J. W. & Lever, M. Validation of 1H NMR spectroscopy as an analytical tool for methylamine metabolites in urine. Clin. Chim. Acta 365, 264–269 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Novotny, M. V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 31, 117–122 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Del Punta, K. et al. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419, 70–74 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Wittwer, C. T., Herrmann, M. G., Moss, A. A. & Rasmussen, R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–139 (1997)

    Article  CAS  PubMed  Google Scholar 

  40. Clipstone, N. A. & Crabtree, G. R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357, 695–697 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Serizawa and Hitoshi Sakano for generously providing MOR28 transgenic mice. We also thank K. Wilson and R. Childs for technical assistance, and members of the Buck laboratory for helpful comments. This project was supported by the Howard Hughes Medical Institute and by grants from the National Institutes of Health (NIDCD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda B. Buck.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Supplementary Figure 1 shows OE tissue stained with X-gal. Supplementary Data shows a brief summary of ligands identified for TAARs, along with EC50s where determined. Supplementary Methods shows a list of chemicals tested for their ability to activate TAARs. (PDF 1097 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liberles, S., Buck, L. A second class of chemosensory receptors in the olfactory epithelium. Nature 442, 645–650 (2006). https://doi.org/10.1038/nature05066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05066

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing