Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein

Abstract

Epithelial tissues maintain a robust architecture during development. This fundamental property relies on intercellular adhesion through the formation of adherens junctions containing E-cadherin molecules1,2. Localization of E-cadherin is stabilized through a pathway involving the recruitment of actin filaments by E-cadherin3,4,5,6. Here we identify an additional pathway that organizes actin filaments in the apical junctional region (AJR) where adherens junctions form in embryonic epithelia. This pathway is controlled by Bitesize (Btsz), a synaptotagmin-like protein7,8 that is recruited in the AJR independently of E-cadherin and is required for epithelial stability in Drosophila embryos. On loss of btsz, E-cadherin is recruited normally to the AJR, but is not stabilized properly and actin filaments fail to form a stable continuous network. In the absence of E-cadherin, actin filaments are stable for a longer time than they are in btsz mutants. We identify two polarized cues that localize Btsz: phosphatidylinositol (4,5)-bisphosphate, to which Btsz binds; and Par-3. We show that Btsz binds to the Ezrin–Radixin–Moesin protein Moesin, an F-actin-binding protein that is localized apically9 and is recruited in the AJR in a btsz-dependent manner. Expression of a dominant-negative form of Ezrin that does not bind F-actin phenocopies the loss of btsz. Thus, our data indicate that, through their interaction, Btsz and Moesin may mediate the proper organization of actin in a local domain, which in turn stabilizes E-cadherin. These results provide a mechanism for the spatial order of actin organization underlying junction stabilization in primary embryonic epithelia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epithelial integrity, adherens junctions stability and actin organization in embryos deficient for btsz or e-cad.
Figure 2: Btsz localization in the AJR requires Par-3 and PtdIns(4,5)P2.
Figure 3: Btsz interacts with Moesin.
Figure 4: Btsz and Moesin cooperate to stabilize E-cad.

Similar content being viewed by others

References

  1. Gumbiner, B. M. Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399–404 (2000)

    Article  CAS  Google Scholar 

  2. Knust, E. & Bossinger, O. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955–1959 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Jamora, C. & Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biol. 4, E101–E108 (2002)

    Article  CAS  Google Scholar 

  4. Bershadsky, A. Magic touch: how does cell–cell adhesion trigger actin assembly? Trends Cell Biol. 14, 589–593 (2004)

    Article  CAS  Google Scholar 

  5. Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-Catenin is a molecular switch that binds E-cadherin–β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005)

    Article  CAS  Google Scholar 

  6. Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell 123, 889–901 (2005)

    Article  CAS  Google Scholar 

  7. Fukuda, M., Saegusa, C. & Mikoshiba, K. Novel splicing isoforms of synaptotagmin-like proteins 2 and 3: identification of the Slp homology domain. Biochem. Biophys. Res. Commun. 283, 513–519 (2001)

    Article  CAS  Google Scholar 

  8. Serano, J. & Rubin, G. M. The Drosophila synaptotagmin-like protein bitesize is required for growth and has mRNA localization sequences within its open reading frame. Proc. Natl Acad. Sci. USA 100, 13368–13373 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002)

    Article  CAS  Google Scholar 

  10. Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol. 6, 21–30 (2004)

    Article  CAS  Google Scholar 

  11. Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Harris, T. J. & Peifer, M. Adherens junction-dependent and-independent steps in the establishment of epithelial cell polarity in Drosophila. J. Cell Biol. 167, 135–147 (2004)

    Article  CAS  Google Scholar 

  13. Tepass, U. et al. shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev. 10, 672–685 (1996)

    Article  CAS  Google Scholar 

  14. Uemura, T. et al. Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev. 10, 659–671 (1996)

    Article  CAS  Google Scholar 

  15. Cox, R. T., Kirkpatrick, C. & Peifer, M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J. Cell Biol. 134, 133–148 (1996)

    Article  CAS  Google Scholar 

  16. Peifer, M., Orsulic, S., Sweeton, D. & Wieschaus, E. A role for the Drosophila segment polarity gene armadillo in cell adhesion and cytoskeletal integrity during oogenesis. Development 118, 1191–1207 (1993)

    CAS  PubMed  Google Scholar 

  17. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001)

    Article  CAS  Google Scholar 

  18. Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996)

    Article  CAS  Google Scholar 

  19. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000)

    Article  CAS  Google Scholar 

  20. Tepass, U., Theres, C. & Knust, E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787–799 (1990)

    Article  CAS  Google Scholar 

  21. Pilot, F., Philippe, J. M., Lemmers, C., Chauvin, J. P. & Lecuit, T. Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development 133, 711–723 (2006)

    Article  CAS  Google Scholar 

  22. Gabev, E., Kasianowicz, J., Abbott, T. & McLaughlin, S. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim Biophys Acta 979, 105–112 (1989)

    Article  CAS  Google Scholar 

  23. Zelhof, A. C. & Hardy, R. W. WASp is required for the correct temporal morphogenesis of rhabdomere microvilli. J. Cell Biol. 164, 417–426 (2004)

    Article  CAS  Google Scholar 

  24. Formstecher, E. et al. Protein interaction mapping: a Drosophila case study. Genome Res. 15, 376–384 (2005)

    Article  CAS  Google Scholar 

  25. Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature 421, 83–87 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Yonemura, S., Matsui, T., Tsukita, S. & Tsukita, S. Rho-dependent and-independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci. 115, 2569–2580 (2002)

    CAS  PubMed  Google Scholar 

  27. Polesello, C., Delon, I., Valenti, P., Ferrer, P. & Payre, F. Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nature Cell Biol. 4, 782–789 (2002)

    Article  CAS  Google Scholar 

  28. De Joussineau, C. et al. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature 426, 555–559 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Pinal, N. et al. Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr. Biol. 16, 140–149 (2006)

    Article  CAS  Google Scholar 

  30. von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132, 1675–1686 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all those who gave us reagents, in particular J. Serano and G. Rubin for fly strains and plasmids, A. Wodarz, A. Zelhof, R. Fehon, F. Payre, E. Suzuki, M. Peifer, H. Oda for flies, antibodies or plasmids; J. Großhans and R. Paro for reagents for synthesizing dsRNA probes for the RNAi screen. We also thank J. Knoblich for suggesting the PIPstrip experiment, members of our group for discussions, S. Kerridge and A. Lebivic for comments on the manuscript. This work was supported by the Association pour la Recherche contre le Cancer (ARC, subvention libre 5179), the CNRS, the Fondation pour la Recherche Médicale (FRM), the Fondation Schlumberger pour l'Education et la Recherche (FSER) and the EMBO Young Investigator Programme. F.P. was supported by the CNRS (bourse BDI) and by the Académie de médecine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lecuit.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This file contains Supplementary Methods and legends to Supplementary Figures and Supplementary Movies. (DOC 71 kb)

Supplementary Figure S1

Phenotypes in btszRNAi and btszK13-4/btszK13-4 mutant embryos. (PDF 663 kb)

Supplementary Figure S2

Phenotypes in btsz RNAi embryos, mutants and morphants. (PDF 256 kb)

Supplementary Figure S3

Iin situ hybridization with btsz probes. (PDF 317 kb)

Supplementary Figure S4

RT-PCR in btszRNAi embryos. (PDF 47 kb)

Supplementary Movie S1

Control RNAi embryo (control 1 probe). (MOV 1780 kb)

Supplementary Movie S2

btszRNAi (probe2) embryo with a strong phenotype (red category in Fig.S2a). (MOV 1618 kb)

Supplementary Movie S3

btszRNAi (probe2) embryo with a medium phenotype (orange category in Fig.S2a). (MOV 1553 kb)

Supplementary Movie S4

btszK13-4 mat-/-, zyg+/- mutant embryo without phenotype (blue category in Fig. S2f). (MOV 1506 kb)

Supplementary Movie S5

btszK13-4 mat-/-, zyg-/- mutant embryo with a strong phenotype (red category in Fig.S2f). (MOV 1332 kb)

Supplementary Movie S6

btszK13-4 mat-/-, zyg-/- mutant embryo with a medium phenotype (red category in Fig.S2f). (MOV 1537 kb)

Supplementary Movie S7

Confocal time lapse series showing E-cad-GFP at 15-s intervals in a btszRNAi embryo. (MOV 1308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilot, F., Philippe, JM., Lemmers, C. et al. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein. Nature 442, 580–584 (2006). https://doi.org/10.1038/nature04935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04935

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing