Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Future lab-on-a-chip technologies for interrogating individual molecules

Abstract

Advances in technology have allowed chemical sampling with high spatial resolution and the manipulation and measurement of individual molecules. Adaptation of these approaches to lab-on-a-chip formats is providing a new class of research tools for the investigation of biochemistry and life processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical micrograph of a 4-electrode electrochemical detector array on which a chromaffin cell has been placed.
Figure 2: Fluorescence micrograph of micrometre-size patterned lipid bilayers containing specific ligands used to cluster mast-cell receptors.
Figure 3: Schematic of F1ATPase rotary motor enzyme to which a magnetic bead is attached.
Figure 4: Arrays of metallic apertures used for optical observation of individual molecules.
Figure 5: Nanopores used for DNA translocation studies.
Figure 6: Fluidic channel system for single-molecule optical measurements.
Figure 7: Schematic and images of DNA retraction from a nanochannel.

Similar content being viewed by others

References

  1. Manz, A. et al. Miniaturized total chemical analysis systems — a novel concept for chemical sensing. Sens. Actuators B 1, 244–248 (1990).

    CAS  Google Scholar 

  2. Muller, D. J., Amrein, M. & Engle, A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119, 172–188 (1997).

    CAS  PubMed  Google Scholar 

  3. Stipe, B. C. A variable temperature scanning tunneling microscope capable of single-molecule vibrational spectroscopy. Rev. Sci. Inst. 70, 133–136 (1999).

    ADS  Google Scholar 

  4. Hansma, H. & Hoch, J. Biomolecular imaging with the atomic force microscope. Annu. Rev. Biophys. Biomol. Struct. 23, 115–134 (1994).

    CAS  PubMed  Google Scholar 

  5. Bustamante, C. & Keller, D. Scanning force microscopy in biology. Phys. Today 48, 32–38 (1995).

    ADS  Google Scholar 

  6. Reif, M. et al. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Google Scholar 

  7. Reif, M. et al. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Google Scholar 

  8. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl Acad Sci. USA 96, 3694–3699 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fisher, T. E. Stretching single molecules into novel confirmations using the atomic force microscope. Nature Struct. Biol. 7, 719–724 (2000).

    CAS  PubMed  Google Scholar 

  10. Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  CAS  PubMed  Google Scholar 

  11. Ashkin, A. et al. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    ADS  CAS  PubMed  Google Scholar 

  12. Wang, M. D. et al. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  CAS  PubMed  Google Scholar 

  14. Sischka, A. et al. Compact microscope-based optical tweezers system for molecular manipulations. Rev. Sci. Inst. 74, 4827–4831 (2003).

    ADS  CAS  Google Scholar 

  15. Mehta, A. et al. Single-molecule biomechanics with optical methods. Science 283, 1689–1695 (1999).

    ADS  CAS  PubMed  Google Scholar 

  16. Neher E. & Sakmann, B. Single-channel currents recorded for membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    ADS  CAS  PubMed  Google Scholar 

  17. Mijatovic, D., Eijkel, J. C. & van den Berg, A. Technologies for nanofluidic systems: top-down vs. bottom-up — a review. Lab Chip 5, 492–500 (2005).

    CAS  PubMed  Google Scholar 

  18. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532 (2000).

    ADS  CAS  PubMed  Google Scholar 

  19. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    CAS  PubMed  Google Scholar 

  20. Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    ADS  CAS  PubMed  Google Scholar 

  21. Schwarz, M. A. & Hauser, P. C. Recent developments in detection methods for microfabricated analytical devices. Lab Chip 1, 1–6 (2001).

    CAS  PubMed  Google Scholar 

  22. Liu, J., Hansen, C. & Quake, S. R. Solving the “world to chip” interface problem with a microfluidic matrix. Anal. Chem. 75, 4718–4723 (2003).

    CAS  PubMed  Google Scholar 

  23. Ng, J. M. K., Gitlin, I., Stroock, A. D. & Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461–3473 (2002).

    CAS  PubMed  Google Scholar 

  24. Zheng, G. et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    CAS  Google Scholar 

  25. Patolsky, F. & Lieber, C. M. Nanowire nanosensors. Mater. Today 8, 20–28 (2005).

    CAS  Google Scholar 

  26. Rosenblatt, S. High performance electrolyte-gated carbon nanotube transistors. Nano Lett. 2, 869–972 (2002).

    ADS  CAS  Google Scholar 

  27. Sazonova, V. et al. A tunable carbon nanotube electromechancial oscillator. Nature 431, 284–287 (2005).

    ADS  Google Scholar 

  28. Burg, T. & Manalis, S. Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83, 2698–2701 (2003).

    ADS  CAS  Google Scholar 

  29. Verbridge, S. et al. Suspended glass nanochannels coupled with microstructures for single molecule detection. J. Appl. Phys. 97, 124317–124320 (2005).

    ADS  Google Scholar 

  30. Ilic, B. et al. Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 5, 925–929 (2005).

    ADS  CAS  PubMed  Google Scholar 

  31. Song, S., Singh, A. K. & Kirby, B. J. Electrophoretic concentration of proteins at laser-patterned porous membranes. Anal. Chem. 76, 4589–4592 (2004).

    CAS  PubMed  Google Scholar 

  32. Schmidt, C., Mayer, M. & Vogel, H. A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Ed. 39, 3137–3140 (2000).

    CAS  Google Scholar 

  33. Suzuki, H. et al. Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. Langmuir 22, 1937–1942 (2006).

    CAS  PubMed  Google Scholar 

  34. Fertig, N. et al. Microstructured glass chip for ion-channel electrophysiology. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 64, 040901-1–040901-4 (2001).

    Google Scholar 

  35. Fertig, N., Blick, R. H. & Behrends, J. C. Whole cell patch clamp recording performed on a planar glass chip: electrophysiology on a chip. Biophys. J. 82, 3056–3062 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Klemic, K. B. et al. Micromolded PDMS planar electrode allows patch-clamp electrical recordings from cells. Biosens. Bioelectron. 17, 597–604 (2002).

    CAS  PubMed  Google Scholar 

  37. Groves, J. T., Ulman, N. & Boxer, S. G. Micropatterning fluid bilayers on solid supports. Science 275, 651–653 (1997).

    CAS  PubMed  Google Scholar 

  38. Pantoja, R. et al. Bilayer reconsistution of voltage-dependent ion channels using a microfabricated silicon chip. Biophys. J. 81, 2389–2394 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, L. et al. Ion–channel assay technologies: quo vadis? Drug Discov. Today 6, 1278–1287 (2001).

    CAS  PubMed  Google Scholar 

  40. Dias, A. et al. An electrochemical detector array to study cell biology on the nanoscale. Nanotechnology 13, 285–289 (2002).

    ADS  CAS  Google Scholar 

  41. Hafez, I. et al. Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc. Natl Acad. Sci. USA 102, 13879–13884 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeck, G. & Fromherz, P. Noninvasive neuroelectronic interfacing wth synaptically connected snail neurons immobilized on a semiconductor chip. Proc. Natl Acad. Sci. USA 98, 10457–10462 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. James, C. D. et al. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. IEEE Trans. Biomed. Eng. 51, 1640–1648 (2004).

    PubMed  Google Scholar 

  44. Oliva, A. A. et al. Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem. Res. 28, 1639–1648 (2003).

    ADS  CAS  PubMed  Google Scholar 

  45. Orth, R. N. et al. Mast cell activiation on patterned lipid bilayers of subcellular dimensions. Langmuir 19, 1599–1605 (2003).

    CAS  Google Scholar 

  46. Wu, M. et al. Visualization of plasma membrane compartmentalization with patterned lipid bilayers. Proc. Natl Acad. Sci. USA 101, 13798–13803 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rondelez, Y. et al. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773–777 (2005).

    ADS  CAS  PubMed  Google Scholar 

  48. Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol. 23, 361–365 (2005).

    CAS  Google Scholar 

  49. Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    ADS  CAS  PubMed  Google Scholar 

  50. Gerton, J. M., Wade, L. A., Lessard, G. A., Ma, Z. & Quake, S. R. Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys. Rev. Lett. 93, 180801 (2004).

    ADS  PubMed  Google Scholar 

  51. Samiee, K. T. et al. λ-Repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides. Biophys. J. 88, 2145–2153 (2005).

    ADS  CAS  PubMed  Google Scholar 

  52. Samiee, K. et al. Zero mode waveguides for single molecule spectroscopy on lipid membranes. Biophys. J. 90, 3288–3299 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rigneault, H. J. et al. Enhancement of single molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett. 95, 117401–117404 (2005).

    ADS  PubMed  Google Scholar 

  54. Kasianowicz, J. et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deamer, D. W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    CAS  PubMed  Google Scholar 

  56. Storm, A. J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005).

    ADS  CAS  PubMed  Google Scholar 

  57. Heng, J. B. et al. Sizing DNA using a nanometer-diameter pore. Biophys. J. 87, 2905–2911 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, J. et al. DNA molecules and configurations in a solid state nanopore microscope. Nature Mater. 2, 611–615 (2003).

    ADS  CAS  Google Scholar 

  59. Mathe, J. et al. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87, 3205–3212 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goodwin, P. M., Nolan, R. L. & Cai, H. Single-molecule spectroscopy for nucleic acid analysis: a new approach for disease detection and genomic analysis. Curr. Pharm. Biotechnol. 5, 271–278 (2004).

    CAS  PubMed  Google Scholar 

  61. Stavis, S. M. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 5, 337–343 (2005).

    CAS  PubMed  Google Scholar 

  62. Stavis, S. M. Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels. Nanotechnology 16, S314–S323 (2005).

    PubMed  Google Scholar 

  63. Foquet, M. DNA fragment sizing by single-molecule detection in submicrometer-sized closed fluidic channels. Anal. Chem. 74, 1415–1422 (2002).

    CAS  PubMed  Google Scholar 

  64. Stavis, S. M. Single-molecule mobility and spectral measurements in submicrometer fluidic channels. J. Appl. Phys. 98, 044903-1–044903-5 (2005).

    ADS  Google Scholar 

  65. Campbell, L. C. et al. Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries. Lab Chip 4, 225–229 (2004).

    MathSciNet  CAS  PubMed  Google Scholar 

  66. Mogensen, K. B., El-Ali, J., Wolff, A. & Kutter, J. P. Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. Appl. Opt. 42, 4072–4079 (2003).

    ADS  CAS  PubMed  Google Scholar 

  67. Foquet, M. E. et al. Fabrication of microcapillaries and waveguides for single molecule detection. Proc. SPIE 3258, 141–147 (1998).

    ADS  CAS  Google Scholar 

  68. Dittrich, P. S. & Manz, A. Single-molecule fluorescence detection in microfluidic channels — the Holy Grail in µTAS? Anal. Bioanal. Chem. 382, 1771–1782 (2005).

    CAS  PubMed  Google Scholar 

  69. Tegenfeldt, J. et al. Micro- and nanofluidics for DNA analysis. Anal. Bioanal. Chem. 378, 1678–1692 (2004).

    CAS  PubMed  Google Scholar 

  70. Kricka, L. Revolution on a square centimeter. Nature Biotechnol. 16, 513–514 (1998).

    CAS  Google Scholar 

  71. Tegenfeldt, J. O. et al. Stretching DNA in nanochannels. Biophys. J. 86, 596A (2004).

    Google Scholar 

  72. Tegenfeldt, J. O. et al. The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl Acad. Sci. USA 101, 10979–10983 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mannion, J. et al. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys. J. 90, 4538–4545 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kung, C.-Y. et al. Confinement and manipulation of individual molecules in attoliter volumes. Anal. Chem. 70, 658–661 (1998).

    CAS  PubMed  Google Scholar 

  75. Han, J. et al. Entropic trapping and escape of long DNA molecules at submicron constrictions. Phys. Rev. Lett. 83, 1688–1691 (1999).

    ADS  CAS  Google Scholar 

  76. Cabodi, M. et al. Entropic recoil separation of long DNA molecules. Anal. Chem. 74, 5169–5174 (2002).

    CAS  PubMed  Google Scholar 

  77. Riehn, R. et al. Restriction mapping in nanofluidic devices. Proc. Natl Acad. Sci. USA 102, 10012–10016 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    ADS  CAS  PubMed  Google Scholar 

  79. Perkins, T. T., Smith, D. E., Larson, R. G. & Chu, S. Stretching of a single tethered polymer in a uniform flow. Science 268, 83–87 (1994).

    ADS  Google Scholar 

  80. Bakajin, O. B. et al. Electrodynamic stretching of DNA in confined environments. Phys. Rev. Lett. 80, 2737–2740 (1998).

    ADS  CAS  Google Scholar 

  81. Service, R. The race for $1000 genome. Science 311, 1544–1546 (2006).

    CAS  PubMed  Google Scholar 

  82. Bialek, W. & Setayeshgar, S. Physical limits to biochemical signaling. Proc. Natl Acad. Sci. USA 102, 10040–10045 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett. 6, 105–109 (2006).

    ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Harold Craighead is a member of the Board of Directors and has an equity interest in Pacific Biosciences, USA, and has received research support from Innovative Biotechnologies International, USA.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craighead, H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006). https://doi.org/10.1038/nature05061

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05061

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing