Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Scaling and the design of miniaturized chemical-analysis systems

Abstract

Micrometre-scale analytical devices are more attractive than their macroscale counterparts for various reasons. For example, they use smaller volumes of reagents and are therefore cheaper, quicker and less hazardous to use, and more environmentally appealing. Scaling laws compare the relative performance of a system as the dimensions of the system change, and can predict the operational success of miniaturized chemical separation, reaction and detection devices before they are fabricated. Some devices designed using basic principles of scaling are now commercially available, and opportunities for miniaturizing new and challenging analytical systems continue to arise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of the miniaturization of separation techniques.
Figure 2: Plasma detectors, an example of miniaturization in detection.
Figure 3: Similarity relations between glow discharges on the macro- and microscales.
Figure 4: Ion traps as an example of miniaturization in detection.

Similar content being viewed by others

References

  1. Manz, A., Grabner, N. & Widmer, H. M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1, 244–248 (1990).

    Article  CAS  Google Scholar 

  2. Golay, M. J. E. Vapor phase chromatography and the telegrapher's equation. Anal. Chem. 29, 928–932 (1957).

    Article  CAS  Google Scholar 

  3. van Deemter, J. J., Zuiderweg, F. J. & Klinkenberg, A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5, 271–289 (1956).

    Article  CAS  Google Scholar 

  4. Fulford, G. D. & Catchpole, J. P. Dimensionless groups. Ind. Eng. Chem. 60, 71 (1968).

    Article  CAS  Google Scholar 

  5. Knox, J. H. & Gilbert, M. T. Kinetic optimization of straight open-tubular liquid-chromatography. J. Chromatogr. 186, 405–418 (1997).

    Article  Google Scholar 

  6. Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935–982 (1883).

    Article  ADS  Google Scholar 

  7. Drexler, K. E. Nanosystems: Molecular Machinery, Manufacturing and Computation (John Wiley & Sons, New York, 1992).

    Google Scholar 

  8. Trimmer, W. S. N. Microrobots and micromechanical systems. Sens. Actuators 19, 267–287 (1989).

    Article  Google Scholar 

  9. Manz, A. et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. J. Chromatogr. 593, 253–258 (1992).

    Article  CAS  Google Scholar 

  10. Harrison, D. J. et al. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261, 895–897 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Backhouse, C. J., Gajdal, A., Pilarski, L. M. & Crabtree, H. J. Improved resolution with microchip-based enhanced field inversion electrophoresis. Electrophoresis 24, 1777–1786 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Ludwig, M., Kohler, F. & Belder, D. High-speed chiral separations on a microchip with UV detection. Electrophoresis 24, 3233–3238 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Y., Zhang, C.-X., Janasek, D. & Manz, A. Sub-second isoelectric focussing in free flow using a microfluidic device. Lab Chip 3, 224–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Mazereeuw, M., de Best, C. M., Tjaden, U. R., Irth, H. & van der Greef, J. Free flow electrophoresis device for continuous on-line separation in analytical systems. An application in biochemical detection. Anal. Chem. 72, 3881–3886 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi, H. et al. Free-flow electrophoresis in a microfabricated chamber with a micromodule fraction separator — continuous separation of proteins. J. Chromatogr. A 990, 169–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, C.-X. & Manz, A. High-speed free-flow electrophoresis on chip. Anal. Chem. 75, 5759–5766 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Fonslow, B. R. & Bowser, M. T. Free-flow electrophoresis on an anodic bonded glass microchip. Anal. Chem. 77, 5706–5710 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kohlheyer, D., Besselink, G. A. J., Schlautmann, S. & Schasfoort, R. B. M. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes. Lab Chip 6, 374–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Albrecht, J., Gaudet, S. & Jensen, K. F. in Ninth International Conference on Miniaturized Systems for Chemistry and Life Sciences (eds Jensen, C. F., Han, J., Harrison, D. J. & Voldman, J.) 1537–1539 (Transducer Research Foundation, Boston, Massachusetts, 2005).

    Google Scholar 

  20. Janasek, D., Schilling, M., Franzke, J. & Manz, A. Isotachophoresis in free-flow using a miniaturized device. Anal. Chem. 78, 3815–3819 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Tas, N. R., Mela, P., Kramer, T., Berenschot, J. W. & van den Berg, A. Capillary induced negative pressure of water plugs in nanochannels. Nano Lett. 3, 1537–1540 (2003).

    Article  ADS  CAS  Google Scholar 

  22. Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005).

    Article  CAS  Google Scholar 

  23. Eijkel, J. C. T. & van den Berg, A. The promise of nanotechnology for separation devices — from a top-down approach to nature-inspired separation devices. Electrophoresis 27, 677–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Bessoth, F. G., deMello, A. J. & Manz, A. Microstructure for efficient continuous flow mixing. Anal. Commun. 36, 213–215 (1999).

    Article  CAS  Google Scholar 

  25. Pollack, L. et al. Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle X-ray scattering. Proc. Natl Acad. Sci. USA 96, 10115–10117 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stroock, A. D. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J. & Ismagilov, R. F. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl. Phys. Lett. 83, 4664–4666 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lee, C.-C. et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310, 1793–1796 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Lipshutz, R. J., Fodor, S. P. A., Gingeras, T. R. & Lockhart, D. J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Fodor S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Dittrich, P. S. & Manz, A. Single-molecule fluorescence detection in microfluidic channels — the Holy Grail in µTAS? Anal. Bioanal. Chem. 382, 1771–1782 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Lakowitz, J. R. (ed.) Principles of Fluorescence Spectroscopy (Kluwer, New York, 1999).

    Book  Google Scholar 

  33. Kitamori, T., Tokeshi, M., Hibara, A. & Sato, K. Thermal lens microscopy and microchip chemistry. Anal. Chem. 76, 52A–60A (2004).

    Article  CAS  Google Scholar 

  34. de Mello, A. J. Seeing single molecules. Lab Chip 3, 29N–34N (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Keller, R. A. et al. Analytical applications of single-molecule detection. Anal. Chem. 7, 316A–324A (2002).

    Google Scholar 

  36. Palmer, P. T. & Limero, T. F. Mass spectrometry in the US space program: past, present, and future. J. Am. Soc. Mass Spectrom. 12, 656–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Short, R. T., Fries, D. P., Koler, S. K., Lembke, C. E. & Byrne, R. H. Development of an underwater mass-spectrometry system for in situ chemical analysis. Meas. Sci. Technol. 10, 1195–1201 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Patterson, G. E. et al. Miniature cylindrical ion trap mass spectrometer. Anal. Chem. 74, 6145–6153 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Riter, L. S. et al. Analytical performance of a miniature cylindrical ion trap mass spectrometer. Anal. Chem. 74, 6154–6162 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Townsend, J. S. Electricity in Gases 365 (Clarendon, Oxford, 1915).

    Google Scholar 

  41. Paschen, F. Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drücken erforderliche Potentialdifferenz. Wied. Anal. Phys. Chem. 37, 69–96 (1889).

    Article  Google Scholar 

  42. Holm, R. Der gegenwärtige Stand der Theorie des Glimmstroms. Phys. Z. 25, 497–535 (1924).

    CAS  Google Scholar 

  43. von Engel, A. & Steenbeck, M. Elektrische Gasentladungen Vol. II (Springer, Berlin, 1934).

    MATH  Google Scholar 

  44. Margenau, H. Theory of high frequency gas discharges. IV. Note on the similarity principle. Phys. Rev. 73, 326–328 (1948).

    Article  ADS  Google Scholar 

  45. Llewllyn Jones, F. & Morgan, G. D. High-frequency discharges. I. Breakdown mechanism and similarity relationship. Proc. Phys. Soc. Lond. B 64, 560–573 (1951).

    Article  ADS  Google Scholar 

  46. Encyclopedia of Physics Vol. XXII Gas Discharges II (ed. Flügge, S.) 1–40 (Springer, Berlin, 1956).

  47. Franzke, J., Kunze, K., Miclea, M. & Niemax, K. Microplasmas for analytical spectrometry. J. Anal. Atom. Spectrom. 18, 802–807 (2003).

    Article  CAS  Google Scholar 

  48. Miclea, M., Kunze, K., Franzke, J. & Niemax, K. Microplasma jet mass spectrometry of halogenated organic compounds. J. Anal. Atom. Spectrom. 19, 990–994 (2004).

    Article  CAS  Google Scholar 

  49. Franzke, J. & Miclea, M. Sample analysis with miniaturized plasmas. Appl. Spectrosc. 60, 80A–90A (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Jenkins, G., Franzke, J. & Manz, A. Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip. Lab Chip 5, 711–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Riter, L. S., Laughlin, B. C., Nikolaev, E. & Cooks, R. G. Direct analysis of volatile organic compounds in human breath using a miniaturized cylindrical ion trap mass spectrometer with a membrane inlet. Rapid Commun. Mass Spectrom. 16, 2370–2373 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Badman, E. R. & Cooks, R. G. Cylindrical ion trap array with mass selection by variation in trap dimensions. Anal. Chem. 72, 5079–5086 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Moxom, J., Reilly, P. T. A., Whitten, W. B. & Ramsey, J. M. Analysis of volatile organic compounds in air with a micro ion trap mass analyzer. Anal. Chem. 75, 3739–3743 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Berkout, V. D., Cotter, R. J. & Segers, D. P. Miniaturized EI/Q/oa TOF mass spectrometer. J. Am. Soc. Mass Spectrom. 12, 641–647 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Prieto, M. C., Kovtoun, V. V. & Cotter, R. J. Miniaturized linear time-of-flight mass spectrometer with pulsed extraction. J. Mass Spectrom. 37, 1158–1162 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Cornish, T. J., Ecelberger, S. & Brinckerhoff, W. Miniature time-of-flight mass spectrometer using a flexible circuitboard reflector. Rapid Commun. Mass Spectrom. 14, 2408–2411 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Diaz, J. A., Giese, C. F. & Gentry, W. R. Sub-miniature ExB sector-field mass spectrometer. J. Am. Soc. Mass Spectrom. 12, 619–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Diaz, J. A., Giese, C. F. & Gentry W. R. Portable double-focusing mass-spectrometer system for field gas monitoring. Field Anal. Chem. Technol. 5, 156–167 (2001).

    Article  CAS  Google Scholar 

  59. Diaz, J. A., Giese, C. F. & Gentry, W. R. Mass spectrometry for in-situ volcanic gas monitoring. Trends Anal. Chem. 21, 498–514 (2002).

    Article  CAS  Google Scholar 

  60. Boumsellek, S. & Ferran, R. J. Trade-offs in miniature quadrupole designs. J. Am. Soc. Mass Spectrom. 12, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Orient, O. J. & Chutjian, A. A compact, high-resolution Paul ion trap mass spectrometer with electron-impact ionization. Rev. Sci. Instrum. 73, 2157–2160 (2002).

    Article  ADS  CAS  Google Scholar 

  62. Blain, M. G. et al. Towards the hand-held mass spectrometer: design considerations, simulations, and fabrication of micrometer-scaled cylindrical ion trap. Int. J. Mass Spectrom. 236, 91–104 (2004).

    Article  CAS  Google Scholar 

  63. Bruin, G. J. M, Tock, P. P. H., Kraak, J. C. & Poppe, H. Electrically driven open-tubular liquid chromatography. J. Chromatogr. 517, 557–573 (1990).

    Article  CAS  Google Scholar 

  64. Desmet, G. & Baron, G. V. On the possibility of shear-driven chromatography: a theoretical performance analysis. J. Chromatogr. A 855, 57–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Desmet, G. & Baron, G. V. The possibility of generating high-speed shear-driven flows and their potential application in liquid chromatography. Anal. Chem. 72, 2160–2165 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. de la Rue, W. & Muller, H. W. Experimental researches on the electric discharge with the chloride of silver battery. Phil. Trans. R. Soc. Lond. 171, 65–116 (1880).

    Article  ADS  Google Scholar 

  67. Carr, W. R. On the laws governing electric discharges in gases at low pressures. Phil. Trans. R. Soc. Lond. A 201, 403–433 (1903).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Agar for proof reading. The financial support of the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen, of the Bundesministerium für Bildung und Forschung, and of the Deutsche Forschungsgemeinschaft (D.F.G.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Janasek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janasek, D., Franzke, J. & Manz, A. Scaling and the design of miniaturized chemical-analysis systems. Nature 442, 374–380 (2006). https://doi.org/10.1038/nature05059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing