Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developing optofluidic technology through the fusion of microfluidics and optics

Abstract

We describe devices in which optics and fluidics are used synergistically to synthesize novel functionalities. Fluidic replacement or modification leads to reconfigurable optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly compact and integrated devices. We categorize optofluidics according to three broad categories of interactions: fluid–solid interfaces, purely fluidic interfaces and colloidal suspensions. We describe examples of optofluidic devices in each category.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A generalized layer construction of an optofluidic device.
Figure 2: The optofluidic microscope.
Figure 3: Optical filter based on an optofluidic micro-ring resonator.
Figure 4: An optofluidic distributed feedback (DFB) dye laser.
Figure 5: The liquid-core/liquid-cladding (L2) waveguide.
Figure 6: The all-optical switch based on optofluidic beam manipulation.
Figure 7: An optofluidic memory system based on nanowells and quantum dots.

Similar content being viewed by others

References

  1. Ronchi, V. Giovan Battista Amici's contribution to the advances of optical microscopy. Physis 11, 520–533 (1969).

    CAS  Google Scholar 

  2. Wood, R. W. Astrophys. J. The mercury paraboloid as a reflecting telescope. 29, 164–176 (1909).

    Article  ADS  Google Scholar 

  3. Haas, W. E. Liquid-crystal display research — the first 15 years. Mol. Cryst. Liq. Cryst. 94, 1–31 (1983).

    Article  CAS  Google Scholar 

  4. Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).

    Article  ADS  CAS  Google Scholar 

  5. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  ADS  CAS  Google Scholar 

  6. Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Article  ADS  Google Scholar 

  7. Atencia, J. & Beebe, D. J. Controlled microfluidic interfaces. Nature 437, 648–655 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).

    Article  CAS  Google Scholar 

  9. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analyt. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

  10. Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Beebe, D. J. et al. Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc. Natl Acad. Sci. USA 97, 13488–13493 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fiorini, G. S., Lorenz, R. M., Kuo, J. S. & Chiu, D. T. Rapid prototyping of thermoset polyester microfluidic devices. Anal. Chem. 76, 4697–4704 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Sudarsan, A. P., Wang, J. & Ugaz, V. M. Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems. Anal. Chem. 77, 5167–5173 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent resistant photocurable 'liquid teflon for microfluidic device fabrication'. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Xia, Y. N. et al. Complex optical surfaces formed by replica molding against elastomeric masters. Science 273, 347–349 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Gambin, Y., Legrand, O. & Quake, S. R. Microfabricated rubber microscope using soft solid immersion lenses. Appl. Phys. Lett. 88, 174102 (2006).

    Article  ADS  Google Scholar 

  19. Introducing the Agilent Photomic Switching Platform [online] http://physics.pdx.edu/~larosaa/Agilent_All_Optical_Network.htm

  20. Campbell, K. et al. A microfluidic 2×2 optical switch. Appl. Phys. Lett. 85, 6119–6121 (2004).

    Article  ADS  CAS  Google Scholar 

  21. Pang, L., Levy, U., Campbell, K., Groisman, A. & Fainman, Y. Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. Opt. Express 13, 9003–9013 (2005).

    Article  ADS  PubMed  Google Scholar 

  22. Zhang, D. Y., Justis, N. & Lo, Y. H. Fluidic adaptive lens of transformable lens type. Appl. Phys. Lett. 84, 4194–4196 (2004).

    Article  ADS  CAS  Google Scholar 

  23. Grillet, C. et al. Compact tunable microfluidic interferometer. Opt. Express 12, 5440–5447 (2004).

    Article  ADS  PubMed  Google Scholar 

  24. Heng, X. et al. Optofluidic microscopy — a method for implementing a high resolution optical microscope on a chip. Lab Chip (submitted).

  25. Domachuk, P., Littler, I. C. M., Cronin-Golomb, M. & Eggleton, B. J. Compact resonant integrated microfluidic refractometer. Appl. Phys. Lett. 88, 093513 (2006).

    Article  ADS  Google Scholar 

  26. Liang, W., Huang, Y. Y., Xu, Y., Lee, R. K. & Yariv, A. Appl. Phys. Lett. 86, 151122 (2005).

    Article  ADS  Google Scholar 

  27. Levy, U., Campbell, K., Groisman, A., Mookherjea, S. & Fainman, Y. On-chip microfluidic tuning of an optical microring resonator Appl. Phys. Lett. 88, 111107–111109 (2006).

    Article  ADS  Google Scholar 

  28. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54, 3–15 (1999).

    Article  CAS  Google Scholar 

  29. Schuck, P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Vo-Dinh, T. Surface-enhanced Raman spectroscopy using metallic nanostructures. Trends Analyt. Chem. 17, 557–582 (1998).

    Article  CAS  Google Scholar 

  31. Armani, A. M., Armani, D. K., Min, B., Vahala, K. J. & Spillane, S. M. Ultra-high-Q microcavity operation in H2O and D2O. Appl. Phys. Lett. 87, 151118 (2005).

    Article  ADS  Google Scholar 

  32. Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Wang, X., Wilson, D., Muller, R., Maker, P. & Psaltis, D. Liquid-crystal blazed-grating beam deflector. Appl. Opt. 39, 6545–6555 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Mach, P. et al. Tunable microfluidic optical fiber. Appl. Phys. Lett. 80, 4294–4296 (2002).

    Article  ADS  CAS  Google Scholar 

  35. Li, Z. Y., Zhang, Z. Y., Emery, T., Scherer, A. & Psaltis, D. Single mode optofluidic distributed feedback dye laser. Opt. Express 14, 696–701 (2006).

    Article  ADS  PubMed  Google Scholar 

  36. Galas, J. C., Torres, J., Belotti, M., Kou, Q. & Chen, Y. Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl. Phys. Lett. 86, 264101 (2005).

    Article  ADS  Google Scholar 

  37. Vezenov, D. V. et al. A low-threshold, high-efficiency microfluidic waveguide laser. J. Am. Chem. Soc. 127, 8952–8953 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Helbo, B., Kragh, S., Kjeldsen, B. G., Reimers, J. L. & Kristensen, A. Investigation of the dye concentration influence on the lasing wavelength and threshold for a microfluidic dye laser. Sens. Actuators A Phys. 111, 21–25 (2004).

    Article  CAS  Google Scholar 

  39. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton Univ. Press, Princeton, New Jersey, 1995).

    MATH  Google Scholar 

  40. Domachuk, P., Nguyen, H. C., Eggleton, B. J., Straub, M. & Gu, M. Microfluidic tunable photonic band-gap device. Appl. Phys. Lett. 84, 1838–1840 (2004).

    Article  ADS  CAS  Google Scholar 

  41. Erickson, D., Rockwood, T., Emery, T., Scherer, A. & Psaltis, D. Nanofluidic tuning of photonic crystal circuits. Opt. Lett. 31, 59–61 (2006).

    Article  ADS  PubMed  Google Scholar 

  42. Maune, B. et al. Liquid-crystal electric tuning of a photonic crystal laser. Appl. Phys. Lett. 85, 360–362 (2004).

    Article  ADS  CAS  Google Scholar 

  43. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Dowling, J. P., Scalora, M., Bloemer, M. J. & Bowden, C. M. The photonic band edge laser: a new approach to gain enhancement. J. Appl. Phys. 75, 1896–1899 (1994).

    Article  ADS  CAS  Google Scholar 

  45. Shinn, A. & Robertson, W. M. Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material. Sens. Actuators B Chem. 105, 360–364 (2005).

    Article  CAS  Google Scholar 

  46. Mookherjea, S. & Yariv, A. Coupled-resonator optical waveguides. IEEE J. Select. Topics Quantum Electron. 8, 448–456 (2002).

    Article  ADS  CAS  Google Scholar 

  47. Knight, J. C., Broeng, J., Birks, T. A. & Russel, P. S. J. Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Cattaneo, F. et al. Digitally tunable microfluidic optical fiber devices. J. Microelectromech. Syst. 12, 907–912 (2003).

    Article  Google Scholar 

  49. Xu, F. et al. Fabrication, modeling, and characterization of form-birefringent nanostructures. Opt. Lett. 20, 2457–2459 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Wolfe, D. B. et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl Acad. Sci. USA 101, 12434–12438 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vezenov, D. V., Mayers, B. T., Wolfe, D. B. & Whitesides, G. M. Integrated fluorescent light source for optofluidic applications. Appl. Phys. Lett. 86, 041104 (2005).

    Article  ADS  Google Scholar 

  52. Mugele, F. & Baret, J. C. Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705–R774 (2005).

    Article  CAS  Google Scholar 

  53. Hayes, R. A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383–385 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Groisman, A., Enzelberger, M. & Quake, S. R. Microfluidic memory and control devices. Science 300, 955–958 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Wolfe, D. B. et al. Diffusion-controlled optical elements for optofluidics. Appl. Phys. Lett. 87, 181105 (2005).

    Article  ADS  Google Scholar 

  56. van der Hulst, H. C. Light Scattering by Small Particles (Dover Publications, New York, 1957).

    Book  Google Scholar 

  57. Domachuk, P. et al. Application of optical trapping to beam manipulation in optofluidics. Opt. Express 13, 7265–7275 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Brody, J. P. & Quake, S. R. A self-assembled microlensing rotational probe. Appl. Phys. Lett. 74, 144–146 (1999).

    Article  ADS  CAS  Google Scholar 

  59. Trindade, T., O'Brien, P. & Pickett, N. L. Chem. Mater. 13, 3843–3858 (2001).

    Article  CAS  Google Scholar 

  60. Lu, Y., Liu, G. L., Kim, J., Mejia, Y. X. & Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 5, 119–124 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Aizpurua, J. et al. Optical properties of gold nanorings. Phys. Rev. Lett. 90, 057401 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Chiou, P. Y., Ohta, A. T. & Wu, M. C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Adleman, J. R., Eggert, H. A., Buse, K. & Psaltis, D. Holographic grating formation in a colloidal suspension of silver nanoparticles. Opt. Lett. 31, 447–449 (2006).

    Article  ADS  PubMed  Google Scholar 

  66. Liu, G. L., Kim, J., Lu, Y. & Lee, L. P. Optofluidic control using photothermal nanoparticles. Nature Mater. 5, 27–32 (2006).

    Article  ADS  CAS  Google Scholar 

  67. Whitesides, G. et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl Acad. Sci. USA 34, 12434–12438 (2004).

    ADS  Google Scholar 

  68. Erickson, D. Spectrographic microfluidic memory. Proc. ICMM June 13–15 2005, Canada.

Download references

Acknowledgements

This work is funded by the Defense Advanced Research Projects Agency (DARPA) Center for Optofluidic Integration, USA. We thank J. Adleman, X. Heng, Y. Fainman and D. Erickson for numerous discussions and their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetri Psaltis.

Ethics declarations

Competing interests

Stephen R. Quake is a founder and equity holder in companies that operate in the areas of optics and microfluidics.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psaltis, D., Quake, S. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006). https://doi.org/10.1038/nature05060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing