Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The origins and the future of microfluidics

Abstract

The manipulation of fluids in channels with dimensions of tens of micrometres — microfluidics — has emerged as a distinct new field. Microfluidics has the potential to influence subject areas from chemical synthesis and biological analysis to optics and information technology. But the field is still at an early stage of development. Even as the basic science and technological demonstrations develop, other problems must be addressed: choosing and focusing on initial applications, and developing strategies to complete the cycle of development, including commercialization. The solutions to these problems will require imagination and ingenuity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A microfluidic chemostat.
Figure 2: Efficient screening for optimal protein crystallization conditions.
Figure 3: Creating and using bubbles in microfluidic devices.
Figure 4: A new platform for cellular and developmental biology.
Figure 5: A simple, inexpensive microfluidic diagnostic device.

References

  1. Manz, A. et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems — capillary electrophoresis on a chip. J. Chromatog. 593, 253–258 (1992).

    Article  CAS  Google Scholar 

  2. Ng, J. M. K., Gitlin, I., Stroock, A. D. & Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461–3473 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Whitesides, G. M. & Stroock, A. D. Flexible methods for microfluidics. Phys. Today 54, 42–48 (2001).

    Article  CAS  Google Scholar 

  4. Mijatovic, D., Eijkel, J. C. T. & van den Berg, A. Technologies for nanofluidic systems: top-down vs. bottom-up — a review. Lab Chip 5, 492–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Czaplewski, D. A., Kameoka, J., Mathers, R., Coates, G. W. & Craighead, H. G. Nanofluidic channels with elliptical cross sections formed using a nonlithographic process. Appl. Phys. Lett. 83, 4836–4838 (2003).

    Article  ADS  CAS  Google Scholar 

  6. Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol. 21, 1179–1183 (2003).

    Article  CAS  Google Scholar 

  7. Weibel, D. B. et al. Torque-actuated valves for microfluidics. Anal. Chem. 77, 4726–4733 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen, N. T. & Wu, Z. G. Micromixers — a review. J. Micromech. Microeng. 15, R1–R16 (2005).

    Article  Google Scholar 

  9. Gunther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M. A. & Jensen, K. F. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21, 1547–1555 (2005).

    Article  PubMed  Google Scholar 

  10. Garstecki, P., Fischbach, M. A. & Whitesides, G. M. Design for mixing using bubbles in branched microfluidic channels. Appl. Phys. Lett. 86, 244108 (2005).

    Article  ADS  Google Scholar 

  11. Laser, D. J. & Santiago, J. G. A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004).

    Article  Google Scholar 

  12. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Article  ADS  Google Scholar 

  15. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  ADS  CAS  Google Scholar 

  16. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Santiago, J. G. Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. 73, 2353–2365 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Wainright, A., Nguyen, U. T., Bjornson, T. & Boone, T. D. Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices. Electrophoresis 24, 3784–3792 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Karnik, R., Castelino, K. & Majumdar, A. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett. 88, 123114 (2006).

    Article  ADS  Google Scholar 

  20. Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA 99, 16531–16536 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shim, J.-u., Cristobal, G., Link, D. R., Thorsen, T. & Fraden, S. Using microfluidics to decouple nucleation and growth of protein crystals. J. Amer. Chem. Soc. (submitted).

  22. Zheng, B., Tice, J. D., Roach, L. S. & Ismagilov, R. F. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew. Chem. Int. Ed. 43, 2508–2511 (2004).

    Article  CAS  Google Scholar 

  23. Ramsey, R. S. & Ramsey, J. M. Generating electrospray from microchip devices using electroosmotic pumping. Anal. Chem. 69, 1174–1178 (1997).

    Article  CAS  Google Scholar 

  24. Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug Discov. 5, 210–218 (2006).

    Article  CAS  Google Scholar 

  25. Pihl, J., Karlsson, M. & Chiu, D. T. Microfluidic technologies in drug discovery. Drug Discov. Today 10, 1377–1383 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Sia, S. K. & Whitesides, G. M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Wheeler, A. R. et al. Microfluidic device for single-cell analysis. Anal. Chem. 75, 3581–3586 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Werdich, A. A. et al. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip 4, 357–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Dittrich, P. S. & Manz, A. Single-molecule fluorescence detection in microfluidic channels — the Holy Grail in µTAS? Anal. Bioanal. Chem. 382, 1771–1782 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Stavis, S. M., Edel, J. B., Samiee, K. T. & Craighead, H. G. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 5, 337–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, C. C. et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310, 1793–1796 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Ganan-Calvo, A. M. & Gordillo, J. M. Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett. 87, 274501 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Garstecki, P. et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85, 2649–2651 (2004).

    Article  ADS  CAS  Google Scholar 

  34. Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

    Article  ADS  CAS  Google Scholar 

  37. Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V. & Lee, A. P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4, 292–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, S. Q. et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. 44, 724–728 (2005).

    Article  CAS  Google Scholar 

  39. Wolfe, D. B. et al. Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc. Natl Acad. Sci. USA 101, 12434–12438 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kerbage, C. & Eggleton, B. J. Tunable microfluidic optical fiber gratings. Appl. Phys. Lett. 82, 1338–1340 (2003).

    Article  ADS  CAS  Google Scholar 

  41. Datta, A. et al. Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens. J. 3, 788–795 (2003).

    Article  ADS  CAS  Google Scholar 

  42. Balslev, S. & Kristensen, A. Microfuidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt. Express 13, 344–351 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Campbell, K. et al. A microfluidic 2×2 optical switch. Appl. Phys. Lett. 85, 6119–6121 (2004).

    Article  ADS  CAS  Google Scholar 

  44. Vezenov, D. V. et al. A low-threshold, high-efficiency microfluidic waveguide laser. J. Am. Chem. Soc. 127, 8952–8953 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R. & Lee, L. P. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Chung, B. G. et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5, 401–406 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Taylor, A. M. et al. Microfluidic multicompartment device for neuroscience research. Langmuir 19, 1551–1556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Walker, G. M. et al. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5, 611–618 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takayama, S. et al. Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem. Biol. 10, 123–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, H. et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76, 5257–5264 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. McClain, M. A. et al. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Cho, B. S. et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Walters, E. M., Clark, S. G., Beebe, D. J. & Wheeler, M. B. Mammalian embryo culture in a microfluidic device. Methods Mol. Biol. 254, 375–382 (2004).

    PubMed  Google Scholar 

  54. Glasgow, I. K. et al. Handling individual mammalian embryos using microfluidics. IEEE Trans. Biomed. Eng. 48, 570–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. & Ismagilov, R. F. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434, 1134–1138 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Jensen, K. F. Silicon-based microchemical systems: characteristics and applications. MRS Bull. 31, 101–107 (2006).

    Article  CAS  Google Scholar 

  58. Lowe, H. & Ehrfeld, W. State-of-the-art in microreaction technology: concepts, manufacturing and applications. Electrochim. Acta 44, 3679–3689 (1999).

    Article  CAS  Google Scholar 

  59. Snyder, D. A. et al. Modular microreaction systems for homogeneously and heterogeneously catalyzed chemical synthesis. Helv. Chim. Acta 88, 1–9 (2005).

    Article  ADS  CAS  Google Scholar 

  60. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable “liquid Teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Auroux, P. A., Koc, Y., deMello, A., Manz, A. & Day, P. J. R. Miniaturised nucleic acid analysis. Lab Chip 4, 534–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Breslauer, D. N., Lee, P. J. & Lee, L. P. Microfluidics-based systems biology. Mol. Biosys. 2, 97–112 (2006).

    Article  CAS  Google Scholar 

  63. Huh, D., Gu, W., Kamotani, Y., Grotberg, J. B. & Takayama, S. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005).

    Article  ADS  PubMed  Google Scholar 

  64. Suh, R., Takayama, S. & Smith, G. D. Microfluidic applications for andrology. J. Androl. 26, 664–670 (2005).

    Article  PubMed  Google Scholar 

  65. Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank M. Fuerstman for extensive help in preparing this manuscript. This work was supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitesides, G. The origins and the future of microfluidics. Nature 442, 368–373 (2006). https://doi.org/10.1038/nature05058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing