Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale

Abstract

Odontogriphus omalus was originally described as a problematic non-biomineralized lophophorate organism. Here we re-interpret Odontogriphus based on 189 new specimens including numerous exceptionally well preserved individuals from the Burgess Shale collections of the Royal Ontario Museum. This additional material provides compelling evidence that the feeding apparatus in Odontogriphus is a radula of molluscan architecture comprising two primary bipartite tooth rows attached to a radular membrane and showing replacement by posterior addition. Further characters supporting molluscan affinity include a broad foot bordered by numerous ctenidia located in a mantle groove and a stiffened cuticular dorsum. Odontogriphus has a radula similar to Wiwaxia corrugata but lacks a scleritome. We interpret these animals to be members of an early stem-group mollusc lineage that probably originated in the Neoproterozoic Ediacaran Period, providing support for the retention of a biomat-based grazing community from the late Precambrian Period until at least the Middle Cambrian.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Odontogriphus omalus from the Middle Cambrian Burgess Shale.
Figure 2: Reconstruction of a colony of Odontogriphus omalus grazing on the cyanobacterium Morania.
Figure 3: Evolutionary tree of the molluscs in the context of the Neoproterozoic–Cambrian substrate revolution35.
Figure 4: Wiwaxia corrugata from the Middle Cambrian Burgess Shale.

Similar content being viewed by others

References

  1. Budd, G. E. The Cambrian fossil record and the origin of the phyla. Integr. Comp. Biol. 43, 157–165 (2003)

    Article  Google Scholar 

  2. Conway Morris, S. A new Cambrian lophophorate from the Burgess Shale of British Columbia. Palaeontology 19, 199–222 (1976)

    Google Scholar 

  3. Dzik, J. Yunnanozoon and the ancestry of chordates. Acta Palaeont. Pol. 40, 341–360 (1995)

    Google Scholar 

  4. Briggs, D. E. G. & Conway Morris, S. in Problematic Fossil Taxa (eds Hoffman, A. & Nitecki, M. H.) 167–183 (Oxford Univ. Press/Clarendon Press, New York, 1986)

    Google Scholar 

  5. Ritchie, A. & Edgecombe, G. D. An Odontogriphid from the Upper Permian of Australia. Palaeontology 44, 861–874 (2001)

    Article  Google Scholar 

  6. Conway Morris, S. The Middle Cambrian metazoan Wiwaxia corrugata (Matthew) from the Burgess Shale and Ogygopsis Shale, British Columbia, Canada. Phil. Trans. R. Soc. Lond. B 307, 507–582 (1985)

    Article  ADS  Google Scholar 

  7. Butterfield, N. J. A reassessment of the enigmatic Burgess Shale fossil Wiwaxia corrugata (Matthew) and its relationship to the polychaete Canadia spinosa Walcott. Paleobiology 16, 287–303 (1990)

    Article  Google Scholar 

  8. Conway Morris, S. & Peel, J. S. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Phil. Trans. R. Soc. Lond. B 347, 305–358 (1995)

    Article  ADS  Google Scholar 

  9. Eibye-Jacobsen, D. A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale. Lethaia 37, 317–335 (2004)

    Article  Google Scholar 

  10. Fedonkin, M. A. & Waggoner, B. M. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388, 868–871 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Conway Morris, S. & Peel, J. S. Articulated halkieriids from the Lower Cambrian of north Greenland. Nature 345, 802–805 (1990)

    Article  ADS  Google Scholar 

  12. Erwin, D. H. & Davidson, E. H. The last common bilaterian ancestor. Development 129, 3021–3032 (2002)

    CAS  PubMed  Google Scholar 

  13. Caron, J. B. & Jackson, D. A. Taphonomy of the Greater Phyllopod Bed Community, Burgess Shale. Palaios 21 (5), (in the press)

  14. Caron, J. B. Taphonomy and Community Analysis of the Middle Cambrian Greater Phyllopod Bed, Burgess Shale. Thesis, Univ. Toronto (2005)

    Google Scholar 

  15. Valentine, J. W. On the Origin of Phyla (Univ. Chicago Press, Chicago/London, 2004)

    Google Scholar 

  16. Balavoine, G. & Adoutte, A. The segmented Urbilateria: A testable scenario. Integr. Comp. Biol. 43, 137–147 (2003)

    Article  Google Scholar 

  17. Peterson, K. J. et al. Estimating metazoan divergence times with a molecular clock. Proc. Natl Acad. Sci. USA 101, 6536–6541 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Douzery, E. J. P., Snell, E. A., Bapteste, E., Delsuc, F. & Philippe, H. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proc. Natl Acad. Sci. USA 101, 15386–15391 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Seilacher, A. Biomat-related lifestyles in the Precambrian. Palaios 14, 86–93 (1999)

    Article  ADS  Google Scholar 

  20. Scheltema, A. H., Kerth, K. & Kuzirian, A. M. Original molluscan radula: Comparisons among Aplacophora, Polyplacophora, Gastropoda, and the Cambrian fossil Wiwaxia corrugata. J. Morphol. 257, 219–244 (2003)

    Article  Google Scholar 

  21. Runnegar, B. in Origin and Evolutionary Radiation of the Mollusca (ed. Taylor, J. D.) 77–87 (Oxford Univ. Press, New York, 1996)

    Google Scholar 

  22. Haas, W. Evolution of calcareous hardparts in primitive molluscs. Malacologia 21, 403–418 (1981)

    Google Scholar 

  23. Bengtson, S. The cap-shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs. Lethaia 25, 401–420 (1992)

    Article  Google Scholar 

  24. Henry, J. Q., Okusu, A. & Martindale, M. Q. The cell lineage of the polyplacophoran, Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution. Dev. Biol. 272, 145–160 (2004)

    Article  CAS  Google Scholar 

  25. Runnegar, B., Pojeta, J. Jr, Taylor, M. E. & Collins, D. New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland; evidence for the early history of polyplacophoran mollusks. J. Paleontol. 53, 1374–1394 (1979)

    Google Scholar 

  26. Vendrasco, M. J., Wood, T. E. & Runnegar, B. N. Articulated Paleozoic fossil with 17 plates greatly expands disparity of early chitons. Nature 429, 288–291 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Vinther, J. & Nielsen, C. The Early Cambrian Halkieria is a mollusc. Zool. Scr. 34, 81–89 (2005)

    Article  Google Scholar 

  28. Scheltema, A. H. Aplacophora as progenetic aculiferans and the coelomate origin of mollusks as the sister taxon of Sipuncula. Biol. Bull. 184, 57–78 (1993)

    Article  CAS  Google Scholar 

  29. Scheltema, A. H. & Ivanov, D. L. An aplacophoran postlarva with iterated dorsal groups of spicules and skeletal similarities to Paleozoic fossils. Invertebr. Biol. 21, 1–10 (2002)

    Google Scholar 

  30. Scheltema, A. H., Tscherkassky, M. & Kuzirian, A. M. in Microscopic Anatomy of Invertebrates (eds Harrison, F. W. & Kohn, A. J.) 13–54 (Wiley-Liss, New York, 1994)

    Google Scholar 

  31. Fischer, F. P. Die Mantelpapillen und Stacheln von Acanthochiton fascicularis L. (Mollusca, Polyplacophora). Zoomorphologie 94, 121–131 (1980)

    Article  Google Scholar 

  32. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000)

    Article  CAS  Google Scholar 

  33. Seilacher, A., Buatois, L. A. & Mángano, L. G. Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227, 323–356 (2005)

    Article  Google Scholar 

  34. Seilacher, A. & Pflüger, F. in Biostabilization of Sediments (eds Krumbein, W. E., Peterson, D. M. & Stal, L. J.) 97–105 (Bibliotheks und Informationssystem der Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany, 1994)

    Google Scholar 

  35. Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. The Cambrian substrate revolution. GSA Today 10, 1–7 (2000)

    Google Scholar 

  36. Dornbos, S., Bottjer, D. & Chen, J.-Y. Evidence for seafloor microbial mats and associated metazoan lifestyles in Lower Cambrian phosphorites of Southwest China. Lethaia 37, 127–137 (2004)

    Article  Google Scholar 

  37. Satterthwait, D. F. Paleobiology and Paleoecology of Middle Cambrian Algae from Western North America. Thesis, Univ. California (1976)

    Google Scholar 

  38. Dornbos, S. Q., Bottjer, D. J. & Chen, J.-Y. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 47–67 (2005)

    Article  Google Scholar 

  39. Conway Morris, S. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36, 593–635 (1993)

    Google Scholar 

  40. Hagadorn, J. W., Fedo, C. M. & Waggoner, B. M. Early Cambrian Ediacaran-type fossils from California. J. Paleontol. 74, 731–740 (2000)

    Article  Google Scholar 

  41. Jensen, S., Gehling, J. G. & Droser, M. L. Ediacara-type fossils in Cambrian sediments. Nature 393, 567–569 (1998)

    Article  ADS  CAS  Google Scholar 

  42. Narbonne, G. M. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33, 421–442 (2005)

    Article  ADS  CAS  Google Scholar 

  43. Bengtson, S. in The Fossil Record of Predation (eds Kowalewski, M. & Kelley, P. H.) 289–317 (The Paleontological Society, New Haven, 2002)

    Google Scholar 

  44. Orr, P. J., Kearns, S. L. & Briggs, D. E. G. Backscattered electron imaging of fossils exceptionally-preserved as organic compressions. Palaios 17, 110–117 (2002)

    Article  ADS  Google Scholar 

  45. Allison, P. A. Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia 21, 403–410 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Bengtson, G. Budd, S. Conway Morris, S. Dornbos, W. Hagadorn, T. Høisaeter and B. Runnegar for reviewing different drafts of this paper. N. Butterfield suggested using the BSE technique and provided unpublished pictures of Wiwaxia. Our research was in part supported by a Post-Doctoral Natural Sciences and Engineering Research Council of Canada grant (to J.-B.C.) and by a Swedish Research Council grant (to C.S.). Permission to collect Burgess Shale specimens was given by Parks Canada to D. Collins. We are thankful to M. Back and J. Waddington from the Royal Ontario Museum for technical help. This is Royal Ontario Museum Burgess Shale Research Project number 6. Author contributions All four authors made significant contributions to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Caron.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Schematic model of Odontogriphus omalus. (PDF 472 kb)

Supplementary Figure 2

Reconstruction of different preservational modes of the radula of Odontogriphus omalus. (PDF 44 kb)

Supplementary Figure 3

Odontogriphus omalus from the Middle Cambrian Burgess Shale, ROM57718. (PDF 888 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, JB., Scheltema, A., Schander, C. et al. A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature 442, 159–163 (2006). https://doi.org/10.1038/nature04894

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04894

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing