Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem cells, ageing and the quest for immortality

Abstract

Listen to an interview with Tom Rando on the stem cells podcast

Adult stem cells reside in most mammalian tissues, but the extent to which they contribute to normal homeostasis and repair varies widely. There is an overall decline in tissue regenerative potential with age, and the question arises as to whether this is due to the intrinsic ageing of stem cells or, rather, to the impairment of stem-cell function in the aged tissue environment. Unravelling these distinct contributions to the aged phenotype will be critical to the success of any therapeutic application of stem cells in the emerging field of regenerative medicine with respect to tissue injury, degenerative diseases or normal functional declines that accompany ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue heterogeneity and stem-cell functionality for homeostasis and repair.
Figure 2: Variation of maximal lifespan across species.
Figure 3: Influences on stem-cell functionality.
Figure 4: Ageing of stem-cell functionality.
Figure 5: Chronological and replicative ageing.

Similar content being viewed by others

References

  1. Phelan, J. P. & Austad, S. N. Natural selection, dietary restriction, and extended longevity. Growth Dev. Aging 53, 4–6 (1989).

    CAS  PubMed  Google Scholar 

  2. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, London, 1952).

    Google Scholar 

  4. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  5. Leroi, A. M. et al. What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mech. Ageing Dev. 126, 421–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Hayflick, L. How and Why We Age (Ballantine Books, New York, 1994).

    Google Scholar 

  7. Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118, 75–86 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Flurkey, K., Papaconstantinou, J., Miller, R. A. & Harrison, D. E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736–6741 (2001).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  13. Ikeno, Y., Bronson, R. T., Hubbard, G. B., Lee, S. & Bartke, A. Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J. Gerontol. A Biol. Sci. Med. Sci. 58, 291–296 (2003).

    Article  PubMed  Google Scholar 

  14. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304 (1977).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Partridge, L., Gems, D. & Withers, D. J. Sex and death: what is the connection? Cell 120, 461–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    Article  CAS  ADS  PubMed  Google Scholar 

  17. Thorndyke, M. C., Chen, W. C., Beesley, P. W. & Patruno, M. Molecular approach to echinoderm regeneration. Microsc. Res. Tech. 55, 474–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Brockes, J. P. & Kumar, A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310, 1919–1923 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  19. Holstein, T. W., Hobmayer, E. & Technau, U. Cnidarians: an evolutionarily conserved model system for regeneration? Dev. Dyn. 226, 257–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Reddien, P. W., Bermange, A. L., Murfitt, K. J., Jennings, J. R. & Sanchez, A. A. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8, 635–649 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Enver, T. et al. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum. Mol. Genet. 14, 3129–3140 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Park, Y. & Gerson, S. L. DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56, 495–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  28. Harrison, D. E., Astle, C. M. & Doubleday, J. W. Cell lines from old immunodeficient donors give normal responses in young recipients. J. Immunol. 118, 1223–1227 (1977).

    CAS  PubMed  Google Scholar 

  29. Hotta, T., Hirabayashi, N., Utsumi, M., Murate, T. & Yamada, H. Age-related changes in the function of hemopoietic stroma in mice. Exp. Hematol. 8, 933–936 (1980).

    CAS  PubMed  Google Scholar 

  30. Carlson, B. M. & Faulkner, J. A. Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol. 256, C1262–C1266 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  32. Van Zant, G. & Liang, Y. The role of stem cells in aging. Exp. Hematol. 31, 659–672 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Snyder, E. Y. & Loring, J. F. A role for stem cell biology in the physiological and pathological aspects of aging. J. Am. Geriatr. Soc. 53, S287–S291 (2005).

    Article  PubMed  Google Scholar 

  34. Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. Chapman, T. & Partridge, L. Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc. Biol. Sci. 263, 755–759 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Weindruch, R., Walford, R. L., Fligiel, S. & Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr. 116, 641–654 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Hornsby, P. J. Cellular senescence and tissue aging in vivo. J. Gerontol. A Biol. Sci. Med. Sci. 57, B251–B256 (2002).

    Article  PubMed  Google Scholar 

  39. Rubin, H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nature Biotechnol. 20, 675–681 (2002).

    Article  CAS  Google Scholar 

  40. Parrinello, S., Coppe, J. P., Krtolica, A. & Campisi, J. Stromal–epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 118, 485–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Gomez, C. R., Boehmer, E. D. & Kovacs, E. J. The aging innate immune system. Curr. Opin. Immunol. 17, 457–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Carmel, R. Anemia and aging: an overview of clinical, diagnostic and biological issues. Blood Rev. 15, 9–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nature Med. 2, 1011–1016 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Harrison, D. E. & Astle, C. M. Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156, 1767–1779 (1982).

    Article  CAS  PubMed  Google Scholar 

  46. Harrison, D. E. Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J. Exp. Med. 157, 1496–1504 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Ogden, D. A. & Micklem, H. S. The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22, 287–293 (1976).

    Article  CAS  PubMed  Google Scholar 

  48. Liang, Y., Van Zant, G. & Szilvassy, S. J. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106, 1479–1487 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J., Astle, C. M. & Harrison, D. E. Genetic regulation of primitive hematopoietic stem cell senescence. Exp. Hematol. 28, 442–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Van Zant, G., Scott-Micus, K., Thompson, B. P., Fleischman, R. A. & Perkins, S. Stem cell quiescence/activation is reversible by serial transplantation and is independent of stromal cell genotype in mouse aggregation chimeras. Exp. Hematol. 20, 470–475 (1992).

    CAS  PubMed  Google Scholar 

  51. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  52. Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nature Immunol. 5, 133–139 (2004).

    Article  CAS  Google Scholar 

  53. Chargé, S. B. & Rudnicki, M. A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209–238 (2004).

    Article  PubMed  Google Scholar 

  54. Gibson, M. C. & Schultz, E. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 6, 574–580 (1983).

    Article  CAS  PubMed  Google Scholar 

  55. Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  56. Brack, A. S., Bildsoe, H. & Hughes, S. M. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J. Cell Sci. 118, 4813–4821 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Conboy, I. M. & Rando, T. A. Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4, 407–410 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  58. Schultz, E. & Lipton, B. H. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech. Ageing Dev. 20, 377–383 (1982).

    Article  CAS  PubMed  Google Scholar 

  59. Bockhold, K. J., Rosenblatt, J. D. & Partridge, T. A. Aging normal and dystrophic mouse muscle: analysis of myogenicity in cultures of living single fibers. Muscle Nerve 21, 173–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Bortoli, S. et al. Gene expression profiling of human satellite cells during muscular aging using cDNA arrays. Gene 321, 145–154 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. de Grey, A. A strategy for postponing aging indefinitely. Stud. Health Technol. Inform. 118, 209–219 (2005).

    PubMed  Google Scholar 

  62. Fabrizio, P. et al. Sir2 blocks extreme life-span extension. Cell 123, 655–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Morgan, J. E. & Partridge, T. A. Muscle satellite cells. Int. J. Biochem. Cell Biol. 35, 1151–1156 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Sigal, S. H., Brill, S., Fiorino, A. S. & Reid, L. M. The liver as a stem cell and lineage system. Am. J. Physiol. 263, G139–G148 (1992).

    CAS  PubMed  Google Scholar 

  65. Oh, S. H., Hatch, H. M. & Petersen, B. E. Hepatic oval ‘stem’ cell in liver regeneration. Semin. Cell Dev. Biol. 13, 405–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Gage, F. H. Stem cells of the central nervous system. Curr. Opin. Neurobiol. 8, 671–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Leri, A., Kajstura, J. & Anversa, P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev. 85, 1373–1416 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Ben Porath, I. & Weinberg, R. A. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961–976 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks R. Wyman (Yale University), A. Wagers (Harvard University), M. Reed (University of Washington), and C. Kuo and E. Chiao (Stanford University) for helpful discussions. This work was supported by an National Institutes of Health Director's Pioneer Award to T.A.R.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rando, T. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006). https://doi.org/10.1038/nature04958

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04958

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing