Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Southern Ocean biogeochemical divide

Abstract

Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air–sea balance of CO2 and global biological production1,2,3,4,5,6,7,8. Box model studies1,2,3,4 first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure ( p CO 2 ). This early research led to two important ideas: high latitude regions are more important in determining atmospheric p CO 2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric p CO 2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO2 because it serves as a lid to a larger volume of the deep ocean5,6. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide7 and in controlling global biological production8. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air–sea CO2 balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO2 and global biological export production are controlled by different regions of the Southern Ocean. The air–sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global circulation diagram relevant for the carbon cycle, and experimental set-up.
Figure 2: Oceanic mechanisms for modifying atmospheric CO 2 and global production in the Princeton GCM.
Figure 3: Change in atmospheric p CO 2 versus export production after surface nutrient depletion simulations in the regular gas exchange model.

Similar content being viewed by others

References

  1. Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric pCO2 . Nature 308, 620–624 (1984)

    Article  ADS  Google Scholar 

  2. Knox, F. & McElroy, M. B. Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Siegenthaler, U. & Wenk, T. H. Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624–626 (1984)

    Article  ADS  CAS  Google Scholar 

  4. Joos, F., Sarmiento, J. L. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349, 772–775 (1991)

    Article  ADS  CAS  Google Scholar 

  5. Sarmiento, J. L. & Orr, J. C. Three-dimensional ocean model simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnol. Oceanogr. 36, 1928–1950 (1991)

    Article  ADS  CAS  Google Scholar 

  6. Marinov, I. Controls on the Air-Sea Balance of Carbon Dioxide. PhD thesis, Princeton Univ. (2005)

    Google Scholar 

  7. Caldeira, K. & Duffy, P. B. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science 287, 620–622 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Mid-latitude westerlies, atmospheric CO2 and climate change during the Ice Ages. Paleoceanography 21, PA2005, doi:10.1029/2005PA001154 (2006)

  11. Kohfeld, K. E., Le Quere, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial-interglacial CO2 cycles. Science 308, 74–78 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Gordon, A. in Antarctic Oceanology I (ed. Reid, J. L.) Antarctic Res. Ser. Vol. 15, 169–203 (American Geophysical Union, Washington DC, 1971)

    Book  Google Scholar 

  13. Toggweiler, J. R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep-sea Res. I 42, 477–500 (1995)

    Article  Google Scholar 

  14. Wyrtki, K. The thermohaline circulation in relation to the general circulation in the oceans. Deep-Sea Res. 8, 39–64 (1961)

    ADS  Google Scholar 

  15. Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, New York, 1942)

    Google Scholar 

  16. Schmitz, W. J. On the interbasin-scale thermohaline circulation. Rev. Geophys. 33, 151–173 (1995)

    Article  ADS  Google Scholar 

  17. Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2 . J. Mar. Res. 63, 813–839, doi:10.1357/0022240054663231 (2005)

    Article  CAS  Google Scholar 

  18. Dutkiewicz, S., Follows, M. J. & Parekh, P. Interactions of the iron and phosphorus cycles: a three dimensional model study. Glob. Biogeochem. Cycles 19, GB1021, doi:10.1029/2004GB002342 (2005)

  19. Toggweiler, J. R., Dixon, K. & Broecker, W. S. The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res. 96, 20467–20497 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Toggweiler, J. R., Murnane, R., Carson, S., Gnanadesikan, A. & Sarmiento, J. L. Representation of the carbon cycle in box models and GCMs–Part 2. Organic pump. Glob. Biogeochem. Cycles 17, 1027, doi:10.1029/2001GB001841 (2003)

    ADS  Google Scholar 

  21. Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14, 571–588 (1999)

    Article  ADS  Google Scholar 

  22. Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990)

    Article  ADS  Google Scholar 

  23. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Najjar, R. & Orr, J. Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. <http://www.cgd.ucar.edu/ oce/OCMIP/design.pdf> (1998).

  25. Gnanadesikan, A., Slater, R. D., Gruber, N. & Sarmiento, J. L. Oceanic vertical exchange and new production: a comparison between models and observations. Deep Sea Res. II 49, 363–401 (2002)

    Article  ADS  Google Scholar 

  26. Gnanadesikan, A., Slater, R. D. & Samuels, B. L. Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models. Geophys. Res. Lett. 30, 1967, doi:10.1029/2003GL018036 (2003)

    Article  ADS  Google Scholar 

  27. Speer, K., Rintoul, S. R. & Sloyan, B. The diabatic Deacon cell. J. Phys. Oceanogr. 30, 3212–3222 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Sloyan, B. M. & Rintoul, S. R. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr. 31, 143–173 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I.M. was supported by the DOE Office of Science while at Princeton University, and by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research, while at MIT. We thank R. Slater for help with the Princeton GCM, D. Sigman and M. Follows for discussions, and R. Anderson for comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Marinov.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains contains Supplementary Discussion, Supplementary Table 1 and Supplementary Figures 1–3. (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinov, I., Gnanadesikan, A., Toggweiler, J. et al. The Southern Ocean biogeochemical divide. Nature 441, 964–967 (2006). https://doi.org/10.1038/nature04883

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04883

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing