Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amorphous silica-like carbon dioxide

Abstract

Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure1,2,3,4,5,6,7,8,9. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations9. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call ‘a-carbonia’. The compression of the molecular phase III of CO2 between 40 and 48 GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680 K show the progressive formation of C–O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics9, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infrared spectra showing the transformation of the molecular solid, CO 2 -III, into a-CO 2 for two different samples.
Figure 2: Comparison of a-CO 2 IR spectrum with mass-shifted spectra.
Figure 3: Comparison of a-CO 2 Raman spectrum with phase V spectra and mass-shifted spectra.
Figure 4: Static structure factor, S(Q ), of a-CO2.

Similar content being viewed by others

References

  1. Iota, V., Yoo, C. S. & Cynn, H. Quartzlike carbon dioxide: an optically nonlinear extended solid at high pressures and temperatures. Science 283, 1510–1513 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Yoo, C. S. et al. Crystal structure of carbon dioxide at high pressure: “superhard” polymeric carbon dioxide. Phys. Rev. Lett. 83, 5527–5530 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Tschauner, O., Mao, H. K. & Hemley, R. J. New transformations of CO2 at high pressures and temperatures. Phys. Rev. Lett. 87, 075701 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Santoro, M., Lin, J. F., Mao, H. K. & Hemley, R. J. In situ high P-T Raman spectroscopy and laser heating of carbon dioxide. J. Chem. Phys. 121, 2780–2787 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Dong, J., Tomfohr, J. K. & Sankey, O. F. Non-molecular carbon dioxide (CO2) solids. Science 287, 11a (2000)

    Article  Google Scholar 

  6. Dong, J., Tomfohr, J. K. & Sankey, O. F. Rigid intertetrahedron angular interaction of nonmolecular carbon dioxide solids. Phys. Rev. B 61, 5967–5971 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Dong, J. et al. Investigation of hardness in tetrahedrally bonded nonmolecular CO2 solids by density-functional theory. Phys. Rev. B 62, 14685–14689 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Holm, B., Ahuja, R., Belonoshko, A. & Johansson, B. Theoretical investigation of high pressure phases of carbon dioxide. Phys. Rev. Lett. 85, 1258–1261 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Serra, S., Cavazzoni, C., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science 284, 788–790 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nature Mater. 3, 558–563 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Goncharov, A. F., Gregoryanz, E., Mao, H. K., Liu, Z. & Hemley, R. J. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–1265 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Gregoryanz, E., Goncharov, A. F., Hemley, R. J. & Mao, H. K. High pressure amorphous nitrogen. Phys. Rev. B 64, 052103 (2001)

    Article  ADS  Google Scholar 

  13. Eremets, M. I., Hemley, R. J., Mao, H. K. & Gregoryanz, E. Semiconducting nonmolecular nitrogen up to 240 GPa and its low pressure stability. Nature 411, 170–174 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Miller, S. A. et al. Aftershocks driven by high-pressure CO2 source at depth. Nature 427, 724–727 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Kendall, J. L., Canelas, D. A., Young, J. L. & DeSimone, J. M. Polymerizations in supercritical carbon dioxide. Chem. Rev. 99, 543–563 (1999)

    Article  CAS  Google Scholar 

  16. Schettino, V., Bini, R., Ceppatelli, M., Ciabini, L. & Citroni, M. Chemical reactions at very high pressure. Adv. Chem. Phys. 11, 105–242 (2005)

    Google Scholar 

  17. Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988)

    Article  ADS  CAS  Google Scholar 

  18. Williams, Q. & Jeanloz, R. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science 239, 902–905 (1988)

    Article  ADS  CAS  Google Scholar 

  19. Williams, Q., Hemley, R. J., Kruger, M. B. & Jeanloz, R. High-pressure infrared spectra of α-quartz, coesite, stishovite and silica glass. J. Geophys. Res. 98, 22157–22170 (1993)

    Article  ADS  Google Scholar 

  20. Hemley, R. J., Mao, H. K., Bell, P. M. & Mysen, B. O. Raman spectroscopy of SiO2 glass at high pressure. Phys. Rev. Lett. 57, 747–750 (1986)

    Article  ADS  CAS  Google Scholar 

  21. Durben, D. J. & Wolf, G. H. Raman spectroscopic study of the pressure-induced coordination change in GeO2 glass. Phys. Rev. B 43, 2355–2363 (1991)

    Article  ADS  CAS  Google Scholar 

  22. Meade, C., Hemley, R. J. & Mao, H. K. High-pressure x-ray diffraction of SiO2 glass. Phys. Rev. Lett. 69, 1387–1390 (1992)

    Article  ADS  CAS  Google Scholar 

  23. Aoki, K., Yamawaki, H., Sakashita, M., Gotoh, Y. & Takemura, K. Crystal structure of the high-pressure phase of solid CO2 . Science 263, 356–358 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Gorelli, F. A., Giordano, V. M., Salvi, P. R. & Bini, R. Linear carbon dioxide in the high-pressure high-temperature crystalline phase IV. Phys. Rev. Lett. 93, 205503 (2004)

    Article  ADS  Google Scholar 

  25. Gorelli, F. A., Ulivi, L., Santoro, M. & Bini, R. The ɛ phase of solid oxygen: evidence of an O4 molecule lattice. Phys. Rev. Lett. 83, 4093–4096 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Häusermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996)

    Article  ADS  Google Scholar 

  27. Liang, Y., Miranda, C. R. & Scandolo, S. Mechanical strength and coordination defects in compressed SiO2 glass. Phys. Rev. Lett. (submitted)

Download references

Acknowledgements

We thank F. Sette and M. Mezouar for discussions and the ESRF for provision of beamtime at ID27. S.S. thanks Y. Liang for preparing the molecular dynamics configurations. This work was supported by the European Community and the Ente Cassa di Risparmio di Firenze.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario Santoro or Federico A. Gorelli.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file shows the procedure used for the x-ray diffraction data processing. The figure shows the diffracted total intensity I(Q), the background intensity Ib(Q) and the sample diffracted intensity, given by the difference between the two. The legend describes how to obtain the S(Q) from the sample diffracted intensity. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santoro, M., Gorelli, F., Bini, R. et al. Amorphous silica-like carbon dioxide. Nature 441, 857–860 (2006). https://doi.org/10.1038/nature04879

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04879

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing