Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communications Arising
  • Published:

Molecular spectroscopy

Complexity of excited-state dynamics in DNA (Reply)

Abstract

We have shown1 that long-lived excited electronic states known as excimers2, which arise from base stacking3, are formed in high yields in a variety of synthetic DNA oligonucleotides. Markovitsi et al.4 question our interpretation, and claim that these states can be accounted for by their exciton theory. However, neither this nor their emission data contradict our finding that in single- and double-stranded A·T (adenine–thymine-paired) DNA, excited states decay through long-lived intermediate states in which excitation is shared by stacked bases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crespo-Hernández, C. E., Cohen, B. & Kohler, B. Nature 436, 1141–1144 (2005).

    Article  ADS  Google Scholar 

  2. Crespo-Hernández, C. E., Cohen, B., Hare, P. M. & Kohler, B. Chem. Rev. 104, 1977–2019 (2004).

    Article  Google Scholar 

  3. Crespo-Hernández, C. E. & Kohler, B. J. Phys. Chem. B 108, 11182–11188 (2004).

    Article  Google Scholar 

  4. Markovitsi, D. et al. 442, doi:10.1038/nature04903 (2006).

  5. Kang, H., Jung, B. & Kim, S. K. J. Chem. Phys. 118, 6717–6719 (2003).

    Article  ADS  CAS  Google Scholar 

  6. He, Y., Wu, C. & Kong, W. J. Phys. Chem. A 107, 5145–5148 (2003).

    Article  CAS  Google Scholar 

  7. Ullrich, S., Schultz, T., Zgierski, M. Z. & Stolow, A. J. Am. Chem. Soc. 126, 2262–2263 (2004).

    Article  CAS  Google Scholar 

  8. Plessow, R., Brockhinke, A., Eimer, W. & Kohse-Hoeinghaus, K. J. Phys. Chem. B 104, 3695–3704 (2000).

    Article  CAS  Google Scholar 

  9. Markovitsi, D., Sharonov, A., Onidas, D. & Gustavsson, T. Chem. Phys. Chem. 3, 303–305 (2003).

    Article  Google Scholar 

  10. Scholes, G. D. & Ghiggino, K. P. J. Phys. Chem. 98, 4580–4590 (1994).

    Article  CAS  Google Scholar 

  11. Wilson, R. W. & Callis, P. R. J. Phys. Chem. 80, 2280–2288 (1976).

    Article  CAS  Google Scholar 

  12. Starikov, E. B. Mod. Phys. Lett. B 18, 825–831 (2004).

    Article  ADS  CAS  Google Scholar 

  13. van Stokkum, I. H. M., Larsen, D. S. & van Grondelle, R. Biochim. Biophys. Acta Bioenerget. 1657, 82–104 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bern Kohler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo-Hernández, C., Cohen, B. & Kohler, B. Complexity of excited-state dynamics in DNA (Reply). Nature 441, E8 (2006). https://doi.org/10.1038/nature04904

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04904

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing