Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across

Abstract

Chondrules are millimetre-sized spherules (mostly silicate) that dominate the texture of primitive meteorites1. Their formation mechanism is debated, but their sheer abundance suggests that the mechanism was both energetic and ubiquitous in the early inner Solar System2. The processes suggested—such as shock waves, solar flares or nebula lightning3,4,5,6,7—operate on different length scales that have been hard to relate directly to chondrule properties. Chondrules are depleted in volatile elements, but surprisingly they show little evidence for the associated loss of lighter isotopes one would expect8. Here we report a model in which molten chondrules come to equilibrium with the gas that was evaporated from other chondrules, and which explains the observations in a natural way. The regions within which the chondrules formed must have been larger than 150–6,000 km in radius, and must have had a precursor number density of at least 10 m-3. These constraints probably exclude nebula lightning, and also make formation far from the nebula midplane problematic. The wide range of chondrule compositions may be the result of different combinations of the local concentrations of precursors and the local abundance of water ice or vapour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mass density in clumps where chondrules form is captured in our model by a simple combination of local properties.

Similar content being viewed by others

References

  1. Jones, R. H., Grossman, J. N. & Rubin, A. E. in Chondrules and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) Vol. 341, 251–316 (Astron. Soc. Pacif. Conf. Ser., San Francisco, 2005)

    Google Scholar 

  2. Ciesla, F. in Chondrules and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) Vol. 341, 811–820 (Astron. Soc. Pacif. Conf. Ser., San Francisco, 2005)

    Google Scholar 

  3. Desch, S. & Connolly, H. C. Jr. A model of the thermal processing of particles in solar nebula shocks; application to the cooling rates of chondrules. Meteor. Planet. Sci. 37, 183–207 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Ciesla, F. J., Hood, L. L. & Weidenschilling, S. Evaluating planetesimal bow shocks as sites for chondrule formation. Meteor. Planet. Sci. 39, 1809–1821 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Iida, A., Nakamoto, T., Susa, H. & Nakagawa, Y. A shock heating model for chondrule formation in a protoplanetary disk. Icarus 153, 430–450 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Nakamoto, T., Hayashi, M. R., Kida, N. T. & Tachibana, S. in Chondrules and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) Vol. 341, 883–892 (Astron. Soc. Pacif. Conf. Ser., San Francisco, 2005)

    Google Scholar 

  7. Desch, S. & Cuzzi, J. N. Formation of chondrules by lightning in the protoplanetary nebula. Icarus (PPIV special issue) 143, 87–105 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Davis, A. M., Alexander, C. M. O'D., Nagahara, H. & Richter, F. M. in Chondrules and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) Vol. 341, 432–455 (Astron. Soc. Pacific Conf. Ser., San Francisco, 2005)

    Google Scholar 

  9. Rayleigh, J. W. S. Theoretical considerations respecting the separation of gases by diffusion and other processes. Phil. Mag. 42, 493–498 (1896)

    Article  Google Scholar 

  10. Richter, F. M., Davis, A. M., Ebel, D. S. & Hashimoto, A. Elemental and isotopic fractionation of type B calcium-aluminum-rich inclusions: Experiments, theoretical considerations, and constraints on their evolution. Geochim. Cosmochim. Acta 66, 521–540 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Alexander, C. M. O'D. Chemical equilibrium and kinetic constraints for chondrule and CAI formation conditions. Geochim. Cosmochim. Acta 68, 3943–3969 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Hewins, R. H., Connolly, H. C. Jr, Lofgren, G. E. & Libourel, G. in Chondrules and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) Vol. 341, 286–316 (Astron. Soc. Pacif. Conf. Ser., San Francisco, 2005)

    Google Scholar 

  13. Alexander, C. M. O'D. et al. The lack of potassium isotopic fractionation in Bishunpur chondrules. Meteorit. Planet. Sci. 35, 859–868 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Nagahara, H. & Ozawa, K. Isotopic fractionation as a probe of heating processes in the solar nebula. Chem. Geol. 169, 45–68 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Young, E. D. & Galy, A. The isotope chemistry and cosmochemistry of magnesium. Rev. Min. Geochem. 55, 197–235 (2004)

    Article  CAS  Google Scholar 

  16. Ebel, D. S. & Grossman, L. W. Condensation in dust-enriched systems. Geochim. Cosmochim. Acta 64, 339–366 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Galy, A., Young, E. D., Ash, R. D. & O'Nions, R. K. The formation of chondrules at high gas pressures in the solar nebula. Science 290, 1751–1754 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Young, E. D. Isotopic cosmobarometry—a synthesis of concepts and implications for chondrule and CAI formation mechanisms. Lunar Planet. Sci. Conf. XXXV, abstr. 1300 [CDROM] (2004).

  19. Jones, R. H., Lee, T., Connolly, H. C. Jr, Love, S. G. & Shang, H. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) (Univ. Arizona Press, 2000)

    Google Scholar 

  20. Ciesla, F. J. & Hood, L. L. The nebular shock wave model for chondrule formation: shock processing in a particle-gas suspension. Icarus 158, 281–293 (2002)

    Article  ADS  Google Scholar 

  21. Cuzzi, J. N., Hogan, R. C., Paque, J. M. & Dobrovolskis, A. R. Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001)

    Article  ADS  Google Scholar 

  22. Hood, L. L., Ciesla, F. J. & Weidenschilling, S. J. in Chondrules and the Protoplanetary Disk (eds Krot, A. N., Scott, E. R. D. & Reipurth, B.) Vol. 341, 873–882 (Astron. Soc. Pacif. Conf. Ser., San Francisco, 2005)

    Google Scholar 

  23. Cuzzi, J. N. & Zahnle, K. R. Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts. Astrophys. J. 614, 490–496 (2004)

    Article  ADS  Google Scholar 

  24. Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006)

    Article  ADS  Google Scholar 

  25. Yurimoto, H. & Kuramoto, N. Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 1763–1766 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Lyons, J. R. & Young, E. D. CO self-shielding as the origin of oxygen isotopic anomalies in the early solar nebula. Nature 435, 317–320 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Krot, A. N. et al. Evolution of oxygen isotopic composition in the inner solar nebula. Astrophys. J. 622, 1333–1342 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Young for several discussions and A. Boss, L. Nittler, and F. Ciesla for comments which improved the manuscript. This work was supported by NASA's Planetary Geology and Geophysics, Origins of Solar Systems, and Cosmochemistry programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Cuzzi.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Discussion on: general relationships and assumptions; solving for local density where clouds from many chondrules overlap; diffusion of evaporated vapor in hydrogen gas; high pressures can preclude isotopic fractionation; details of chemical kinetic models; other meteoritic properties leading to similar chondrule number densities; and how are high chondrule concentrations produced? (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuzzi, J., Alexander, C. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature 441, 483–485 (2006). https://doi.org/10.1038/nature04834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04834

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing