Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sympatric speciation in palms on an oceanic island

Abstract

The origin of species diversity has challenged biologists for over two centuries. Allopatric speciation, the divergence of species resulting from geographical isolation, is well documented1. However, sympatric speciation, divergence without geographical isolation, is highly controversial2. Claims of sympatric speciation must demonstrate species sympatry, sister relationships, reproductive isolation, and that an earlier allopatric phase is highly unlikely1. Here we provide clear support for sympatric speciation in a case study of two species of palm (Arecaceae) on an oceanic island. A large dated phylogenetic tree shows that the two species of Howea, endemic to the remote Lord Howe Island, are sister taxa and diverged from each other well after the island was formed 6.9 million years ago3. During fieldwork, we found a substantial disjunction in flowering time that is correlated with soil preference. In addition, a genome scan4,5 indicates that few genetic loci are more divergent between the two species than expected under neutrality, a finding consistent with models of sympatric speciation involving disruptive/divergent selection2. This case study of sympatric speciation in plants provides an opportunity for refining theoretical models on the origin of species, and new impetus for exploring putative plant and animal examples on oceanic islands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lord Howe Island and its endemic palms.
Figure 2: Flowering phenology for each Howea species.
Figure 3: Distribution of H. forsteriana and H. belmoreana according to mean soil pH and elevation.
Figure 4: AFLP genome scan for species differentiation in H. belmoreana and H. forsteriana.

Similar content being viewed by others

References

  1. Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, Sunderland, Massachusetts, 2004)

    Google Scholar 

  2. Gavrilets, S. Models of speciation: what have we learned in 40 years? Evolution 57, 2197–2215 (2003)

    Article  PubMed  Google Scholar 

  3. McDougall, I., Embleton, B. J. J. & Stone, D. B. Origin and evolution of Lord Howe Island, southwest Pacific Ocean. J. Geol. Soc. Aust. 28, 155–176 (1981)

    Article  CAS  Google Scholar 

  4. Luikart, G., England, P., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nature Rev. Genet. 4, 981–994 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Beaumont, M. Adaptation and speciation: what can FST tell us? Trends Ecol. Evol. 20, 435–440 (2005)

    Article  PubMed  Google Scholar 

  6. Turelli, M., Barton, N. H. & Coyne, J. A. Theory and speciation. Trends Ecol. Evol. 16, 330–343 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Higashi, M., Takimoto, G. & Yamamura, N. Sympatric speciation by sexual selection. Nature 402, 523–526 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kondrashov, A. S. & Kondrashov, F. A. Interactions among quantitative traits in the course of sympatric speciation. Nature 400, 351–353 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tregenza, T. & Butlin, R. K. Speciation without isolation. Nature 400, 311–312 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Filchak, K. E., Roethele, J. B. & Feder, J. L. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407, 739–742 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Schliewen, U. K., Tautz, D. & Pääbo, S. Sympatric speciation suggested by crater lake cichlids. Nature 368, 629–632 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Meyer, A., Kocher, T. D., Basasibwaki, K. P. & Wilson, A. C. W. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347, 550–553 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bush, G. L. Sympatric speciation in animals, new wine in old bottles. Trends Ecol. Evol. 9, 285–288 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. Sorenson, M. D., Sefc, K. M. & Payne, R. B. Speciation by host switch in brood indigo birds. Nature 424, 928–931 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Pickard, J. Vegetation of Lord Howe Island. Cunninghamia 1, 133–265 (1983)

    Google Scholar 

  17. Bailey, L. H. Howea in cultivation–the sentry palms. Gentes Herbarum 4, 189–198 (1939)

    Google Scholar 

  18. Oliver, W. R. B. The vegetation and flora of Lord Howe Island. Trans. Proc. NZ Inst. 49, 94–161 (1917)

    Google Scholar 

  19. Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401–437 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Dransfield, J. et al. A new phylogenetic classification of the palm family, Arecaceae. Kew Bull. (in the press)

  21. Sanderson, M. J. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14, 1218–1231 (1997)

    Article  CAS  Google Scholar 

  22. Kishino, H., Thorne, J. L. & Bruno, W. J. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol. Biol. Evol. 18, 352–361 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Burrett, C., Duhig, N., Berry, R. & Varne, R. Asian and south-western Pacific continental terranes derived from Gondwana, and their biogeographic significance. Aust. Syst. Bot. 4, 13–24 (1991)

    Article  Google Scholar 

  24. Beaumont, M. & Nichols, R. Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B 263, 1619–1626 (1996)

    Article  ADS  Google Scholar 

  25. Via, S. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 16, 381–390 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Brooke, B. R., Woodroffe, C. D., Murray-Wallace, C. V., Heijnis, H. & Jones, B. G. Quaternary calcarenite stratigraphy on Lord Howe Island, southern Pacific Ocean and the record of coastal carbonate deposition. Quat. Sci. Rev. 22, 859–880 (2003)

    Article  ADS  Google Scholar 

  27. Doebeli, M., Dieckmann, U., Metz, J. & Tautz, D. What we have also learned: adaptive speciation is theoretically plausible. Evolution 59, 691–695 (2005)

    PubMed  Google Scholar 

  28. Swofford, D. L. PAUP* 4.0: Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, Sunderland, Massachusetts, 2001)

    Google Scholar 

  29. Vaughan, R. E. & Wiehe, P. O. Studies on the vegetation of Mauritius 1: a preliminary survey of the plant communities. J. Ecol. 25, 289–343 (1937)

    Article  Google Scholar 

  30. Berry, E. W. A palm from the mid-Cretaceous. Torreya 5, 30–33 (1905)

    Google Scholar 

Download references

Acknowledgements

We thank the Lord Howe Island Board, L. Wilson, T. Wilson, J. Smith and the New South Wales National Parks and Wildlife Service for facilitating this research; E. Brown and B. Conn for logistical support; T. Wilmot, R. Cowan, L. Llédo, I. Gallego and L. Hanson for research assistance; C. Lewis, J. Roncal, M. Thomas and M. Beaumont for sharing data and software; J. Dowe, the Flecker Botanic Garden and Royal Botanic Gardens, Sydney for providing material; J. Moat for GIS assistance; J. Dransfield, J.-C. Pintaud, S. Gavrilets, M. Chase, T. Barraclough and L. Rieseberg for discussions; and the Royal Botanic Gardens, Kew, the BAT Biodiversity Partnership, the European Commission and the Leverhulme Trust for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Savolainen.

Ethics declarations

Competing interests

DNA sequences have been deposited at EBI under accession numbers AF453329–AF453381, AY348907–AY348944, AY543096–AY5443156, AJ830020–AJ831373, AJ971821–AJ971841 (see Supplementary Information). Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

Supplementary notes with list of taxa, chronogram, phenological profiles and population statistics. (PDF 871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savolainen, V., Anstett, MC., Lexer, C. et al. Sympatric speciation in palms on an oceanic island. Nature 441, 210–213 (2006). https://doi.org/10.1038/nature04566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04566

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing