Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Is our Universe natural?

Abstract

It goes without saying that we are stuck with the Universe we have. Nevertheless, we would like to go beyond simply describing our observed Universe, and try to understand why it is that way rather than some other way. When considering both the state in which we find our current Universe, and the laws of physics it obeys, we discover features that seem remarkably unnatural to us. Physicists and cosmologists have been exploring increasingly ambitious ideas in an attempt to explain how surprising aspects of our Universe can arise from simple dynamical principles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A possible space-time diagram for the Universe on ultra-large scales.

Similar content being viewed by others

References

  1. 't Hooft, G. in Recent Developments in Gauge Theories vol. 59 (eds 't Hooft, G. et al.) NATO Advanced Study Institute, Series B: Physics (1980).

    Book  Google Scholar 

  2. Zamolodchikov, A. B. ‘Irreversibility’ of the flux of the renormalization group in a 2-D field theory. JETP Lett. 43, 730–732 (1986).

    ADS  MathSciNet  Google Scholar 

  3. Cardy, J. L. Is there a c theorem in four-dimensions? Phys. Lett. B 215, 749–752 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Gaite, J. & O'Connor, D. Field theory entropy and the renormalization group. Phys. Rev. D 54, 5163–5173 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  6. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  7. Spergel, D. N. et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. 148 (suppl.), 175–194 (2003).

    Article  Google Scholar 

  8. Carroll, S. M. The cosmological constant. Living Rev. Rel. 4, 1 (2001).

    Article  MathSciNet  Google Scholar 

  9. Penrose, R. in The Emperor's New Mind Ch. 7 (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  10. Guth, A. H. The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Linde, A. D. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982).

    Article  ADS  Google Scholar 

  12. Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982).

    Article  ADS  Google Scholar 

  13. Linde, A. D. Chaotic inflation. Phys. Lett. B 129, 177–181 (1983).

    Article  ADS  Google Scholar 

  14. Vachaspati, T. & Trodden, M. Causality and cosmic inflation. Phys. Rev. D 61, 023502 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  15. Guth, A.H. & Pi, S.Y. Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110–1113 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Hawking, S. W. The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295–297 (1982).

    Article  ADS  Google Scholar 

  17. Starobinsky, A. A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175–178 (1982).

    Article  ADS  Google Scholar 

  18. Bardeen, J. M., Steinhardt, P. J. & Turner, M. S. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679–693 (1983).

    Article  ADS  Google Scholar 

  19. Hollands, S. & Wald, R. M. An alternative to inflation. Gen. Rel. Grav. 34, 2043–2055 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  20. Albrecht, A. & Sorbo, L. Can the Universe afford inflation? 〈arXiv:hep-th/0405270〉 (2004).

  21. Carroll, S. M. & Chen, J. Spontaneous inflation and the origin of the arrow of time. 〈arXiv:hep-th/0410270〉 (2004).

  22. Vilenkin, A. The birth of inflationary universes. Phys. Rev. D 27, 2848–2855 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  23. Linde, A. D. Eternal chaotic inflation. Mod. Phys. Lett. A 1, 81–85 (1986).

    Article  ADS  Google Scholar 

  24. Linde, A. D. Eternally existing selfreproducing chaotic inflationary universe. Phys. Lett. B 175, 395–400 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Goncharov, A. S., Linde, A. D. & Mukhanov, V. F. The global structure of the inflationary universe. Int. J. Mod. Phys. A 2, 561–591 (1987).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. Garriga, J. & Vilenkin, A. Recycling universe. Phys. Rev. D 57, 2230–2244 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Dutta, S. & Vachaspati, T. Islands in the Lambda-sea. Phys. Rev. D 71, 083507 (2005).

    Article  ADS  Google Scholar 

  28. Holman, R. & Mersini-Houghton, L. Why the universe started from a low entropy state. 〈arXiv:hep-th/0511102〉 (2005).

  29. Farhi, E. & Guth, A. H. An obstacle to creating a universe in the laboratory. Phys. Lett. B 183, 149–155 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Vilenkin, A. Quantum cosmology and the initial state of the Universe. Phys. Rev. D 37, 888–897 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Farhi, E., Guth, A. H. & Guven, J. Is it possible to create a universe in the laboratory by quantum tunneling? Nucl. Phys. B 339, 417–490 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  32. Fischler, W., Morgan, D. & Polchinski, J. Quantum nucleation of false vacuum bubbles. Phys. Rev. D 41, 2638–2641 (1990).

    Article  ADS  CAS  Google Scholar 

  33. Fischler, W., Morgan, D. & Polchinski, J. Quantization of false vacuum bubbles: a Hamiltonian treatment of gravitational tunneling. Phys. Rev. D 42, 4042–4055 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Linde, A. D. Hard art of the universe creation (stochastic approach to tunneling and baby universe formation). Nucl. Phys. B 372, 421–442 (1992).

    Article  ADS  Google Scholar 

  35. Aguirre, A. & Johnson, M. C. Dynamics and instability of false vacuum bubbles. Phys. Rev. D 72, 103525 (2005).

    Article  ADS  Google Scholar 

  36. Aguirre, A. & Johnson, M. C. Two tunnels to inflation. 〈arXiv:gr-qc/0512034〉 (2005).

  37. Alberghi, G. L., Lowe, D. A. & Trodden, M. Charged false vacuum bubbles and the AdS/CFT correspondence. J. High Energy Phys. 9907, 020 (1999); published online 23 June 1999 (arXiv:hep-th/9906047).

    Article  ADS  MathSciNet  Google Scholar 

  38. Hellerman, S. On the landscape of superstring theory in D > 10. 〈arXiv:hepth/0405041〉 (2005).

  39. Adams, A., Liu, X. McGreevy, J., Saltman, A. & Silverstein, E. Things fall apart: topology change from winding tachyons. J. High Energy Phys. 0510, 033 (2005); published online 5 August 2005 (arXiv:hep-th/0502021).

    Article  ADS  MathSciNet  Google Scholar 

  40. Dijkgraaf, R., Gopakumar, R., Ooguri, H. & Vafa, C. Baby universes in string theory. 〈arXiv:hep-th/0504221〉 (2005).

  41. McGreevy, J. & Silverstein, E. The tachyon at the end of the universe. J. High Energy Phys. 0508, 090 (2005); published online 3 August 2005 (arXiv:hep-th/0506130).

    Article  ADS  MathSciNet  Google Scholar 

  42. Freivogel, B. et al. Inflation in AdS/CFT. 〈arXiv:hep-th/0510046〉 (2005).

  43. Dyson, L., Kleban, M. & Susskind, L. Disturbing implications of a cosmological constant. J. High Energy Phys. 0210, 011 (2002); published online 14 November 2002 (arXiv:hep-th/0208013).

    Article  ADS  MathSciNet  Google Scholar 

  44. Bousso, R. & Polchinski, J. Quantization of four-form fluxes and dynamical neutralization of the cosmological constant. J. High Energy Phys. 0006, 006 (2000); published online 26 June 2000 (arXiv:hep-th/0004134).

    Article  ADS  MathSciNet  Google Scholar 

  45. Feng, J. L., March-Russell, J., Sethi, S. & Wilczek, F. Saltatory relaxation of the cosmological constant. Nucl. Phys. B 602, 307–328 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  46. Giddings, S. B., Kachru, S. & Polchinski, J. Hierarchies from fluxes in string compactifications. Phys. Rev. D 66, 106006 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  47. Kachru, S., Kallosh, R., Linde, A. & Trivedi, S. P. De Sitter vacua in string theory. Phys. Rev. D 68, 046005 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  48. Douglas, M. R. The statistics of string/M theory vacua. J. High Energy Phys. 0305, 046 (2003); published online 24 April 2003 (arXiv:hep-th/0303194).

    Article  ADS  MathSciNet  Google Scholar 

  49. Ashok, S. & Douglas, M. R. Counting flux vacua. J. High Energy Phys. 0401, 060 (2004); published online 12 January 2004 (arXiv:hep-th/0307049).

    Article  ADS  MathSciNet  Google Scholar 

  50. Linde, A. Inflation, quantum cosmology and the anthropic principle. 〈arXiv:hepth/0211048〉 (2002).

  51. Vilenkin, A. Predictions from quantum cosmology. Phys. Rev. Lett. 74, 846–849 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Tegmark, M. What does inflation really predict? J. Cosmol. Astropart. Phys. 0504, 001 (2005); published online 12 October 2004 (arXiv:astro-ph/0410281).

    Article  ADS  Google Scholar 

  53. Aguirre, A. On making predictions in a multiverse: conundrums, dangers, and coincidences. 〈arXiv:astro-ph/0506519〉 (2005).

  54. Garriga, J., Schwartz-Perlov, D., Vilenkin, A. & Winitzki, S. Probabilities in the inflationary multiverse. 〈arXiv:hep-th/0509184〉 (2005).

  55. Easther, R., Lim, E. A. & Martin, M. R. Counting pockets with world lines in eternal inflation. 〈arXiv:astro-ph/0511233〉 (2005).

  56. Tegmark, M., Aguirre, A., Rees, M. & Wilczek, F. Dimensionless constants, cosmology and other dark matters. 〈arXiv:astro-ph/0511774〉 (2005).

  57. Weinberg, S. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607–2610 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Vilenkin, A. Quantum cosmology and the constants of nature. 〈arXiv:gr-qc/9512031〉 (1995).

  59. Martel, H., Shapiro, P. R. & Weinberg, S. Likely values of the cosmological constant. Astrophys. J. 492, 29–40 (1998).

    Article  ADS  Google Scholar 

  60. Banks, T., Dine, M. & Motl, L. On anthropic solutions of the cosmological constant problem. J. High Energy Phys. 0101, 031 (2001); published online 26 July 2000 (arXiv:hep-th/0007206).

    Article  ADS  MathSciNet  Google Scholar 

  61. Pogosian, L., Vilenkin, A. & Tegmark, M. Anthropic predictions for vacuum energy and neutrino masses. J. Cosmol. Astropart. Phys. 0407, 005 (2004); published online 26 April 2004 (arXiv:astro-ph/0404497).

    Article  ADS  Google Scholar 

  62. Arkani-Hamed, N. & Dimopoulos, S. Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC. J. High Energy Phys. 0506, 073 (2005); published online 24 May 2004 (arXiv:hep-th/0405159).

    Article  ADS  Google Scholar 

  63. Arkani-Hamed, N., Dimopoulos, S. & Kachru, S. Predictive landscapes and new physics at a TeV. 〈arXiv:hep-th/0501082〉 (2005).

  64. Dine, M., O'Neil, D. & Sun, Z. Branches of the landscape. J. High Energy Phys. 0507, 014 (2005); published online 20 January 2005 (arXiv:hep-th/0501214).

    Article  ADS  MathSciNet  Google Scholar 

  65. Fox, P. J. et al. Supersplit supersymmetry. 〈arXiv:hep-th/0503249〉 (2005).

  66. Tegmark, M. & Rees, M. J. Why is the CMB fluctuation level 10−5? Astrophys. J. 499, 526 (1998); published online 12 December 1997 (arXiv:astro-ph/9709058).

    Article  ADS  CAS  Google Scholar 

  67. Graesser, M. L., Hsu, S. D. H., Jenkins, A. & Wise, M. B. Anthropic distribution for cosmological constant and primordial density perturbations. Phys. Lett. B 600, 15–21 (2004).

    Article  ADS  CAS  Google Scholar 

  68. Garriga, J. & Vilenkin, A. Anthropic prediction for Lambda and the Q catastrophe. 〈arXiv:hep-th/0508005〉 (2005).

  69. Feldstein, B., Hall, L. J. & Watari, T. Density perturbations and the cosmological constant from inflationary landscapes. 〈arXiv:hep-th/0506235〉 (2005).

  70. Aguirre, A. The cold big-bang cosmology as a counter-example to several anthropic arguments. Phys. Rev. D 64, 083508 (2001); published online 12 July 2001 (arXiv:astro-ph/0106143).

    Article  ADS  Google Scholar 

  71. Olum, K. D. Conflict between anthropic reasoning and observation. 〈arXiv:grqc/0303070〉 (2003).

  72. Smolin, L. Scientific alternatives to the anthropic principle. 〈arXiv:hep-th/0407213〉 (2004).

Download references

Acknowledgements

I thank A. Aguirre, J. Chen, B. Freivogel, J. Polchinski, E. Silverstein and A. Vilenkin for helpful conversations. This work was supported in part by the US Department of Energy, the National Science Foundation, and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, S. Is our Universe natural?. Nature 440, 1132–1136 (2006). https://doi.org/10.1038/nature04804

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04804

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing