Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heavy element synthesis in the oldest stars and the early Universe

Abstract

The first stars in the Universe were probably quite different from those born today. Composed almost entirely of hydrogen and helium (plus a tiny trace of lithium), they lacked the heavier elements that determine the formation and evolution of younger stars. Although we cannot observe the very first stars — they died long ago in supernovae explosions — they created heavy elements that were incorporated into the next generation. Here we describe how observations of heavy elements in the oldest surviving stars in our Galaxy's halo help us understand the nature of the first stars — those responsible for the chemical enrichment of our Galaxy and Universe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abundance comparisons between measured and predicted isotopic abundances.
Figure 2: Spectra featuring three n-capture lines in the Sun and two contrasting low-metallicity stars.
Figure 3: Elemental ratios for galactic halo and disk stars.
Figure 4: Abundances in the very metal-poor halo star CS22892–052.
Figure 5: Elemental abundance patterns in galactic halo stars.
Figure 6: Relative abundances of the elemental ratio [Ge/H] as a function of metallicity (Fe).
Figure 7: Abundance trends for the ratio La/Eu in galactic stars.

Similar content being viewed by others

References

  1. Truran, J. W., Cowan, J. J., Pilachowski, C. A. & Sneden, C. Probing the neutron-capture nucleosynthesis history of galactic matter. Publ. Astron. Soc. Pacif. 114, 1293–1308 (2002).

    Article  ADS  Google Scholar 

  2. Sneden, C. & Cowan, J. J. The genesis of the heaviest elements in the Milky Way galaxy. Science 299, 70–75 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Beers, T. C. & Christlieb, N. The discovery and analysis of very metal-poor stars in the galaxy. Annu. Rev. Astron. Astrophys. 43, 531–580 (2005).

    Article  ADS  CAS  Google Scholar 

  4. Cowan, J. J. & Thielemann, F.-K. R-process nucleosynthesis in supernovae. Phys. Today 57, 47–53 (2004).

    Article  CAS  Google Scholar 

  5. Cowan, J. J. & Sneden, C. in Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements (ed. McWilliam, A. & Rauch, M.), 27–42 (Cambridge Univ. Press, 2004).

    Google Scholar 

  6. Spite, M. & Spite, F. Nucleosynthesis in the Galaxy and the chemical composition of old halo stars. Astron. Astrophys. 67, 23–31 (1978).

    ADS  CAS  Google Scholar 

  7. Sneden, C. & Parthasarathy, M. The r- and s-process nuclei in the early history of the galaxy — HD 122563. Astrophys. J. 267, 757–778 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Sneden, C. & Pilachowski, C. A. An extremely metal-poor star with r-process overabundances. Astrophys. J. 288, L55–L58 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Gilroy, K. K., Sneden, C., Pilachowski, C. A. & Cowan, J. J. Abundances of neutron capture elements in Population II stars. Astrophys. J. 327, 298–320 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Gratton, R. & Sneden, C. Abundances of neutron-capture elements in metal-poor stars. Astron. Astrophys. 287, 927–946 (1994).

    ADS  CAS  Google Scholar 

  11. McWilliam, A., Preston, G. W., Sneden, C. & Searle, L. Spectroscopic analysis of 33 of the most metal poor stars. II. Astron. J. 109, 2757–2799 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Cowan, J. J., Burris, D. L., Sneden, C., McWilliam, A. & Preston, G. W. Evidence of heavy element nucleosynthesis early in the history of the galaxy: the ultra-metal-poor star CS22892–052. Astrophys. J. 439, L51–L54 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Sneden, C. et al. The ultrametal-poor, neutron-capture-rich giant star CS22892–052. Astrophys. J. 467, 819–840 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Ryan, S. G., Norris, J. E. & Beers, T. C. Extremely metal-poor stars. II. Elemental abundances and the early chemical enrichment of the Galaxy. Astrophys. J. 471, 254–278 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Burris, D. L. et al. Neutron-capture elements in the early Galaxy: Insights from a large sample of metal-poor giants. Astrophys. J. 544, 302–319 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Sneden, C. et al. The extremely metal-poor neutron capture-rich star CS22892–052: a comprehensive abundance analysis. Astrophys. J. 591, 936–953 (2003).

    Article  ADS  CAS  Google Scholar 

  17. Hill, V. et al. First stars. I. The extreme r-element rich, iron-poor halo giant CS31082–001. Implications for the r-process site(s) and radioactive cosmochronology. Astron. Astrophys. 387, 560–579 (2002).

    Article  ADS  CAS  Google Scholar 

  18. Christlieb, N. et al. The Hamburg/ESO R-process Enhanced Star survey (HERES). I. Project description, and discovery of two stars with strong enhancements of neutron-capture elements. Astron. Astrophys. 428, 1027 (2004).

    Article  ADS  CAS  Google Scholar 

  19. Barklem, P. S. et al. The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample. Astron. Astrophys. 439, 129 (2005).

    Article  ADS  CAS  Google Scholar 

  20. Christlieb, N. et al. A stellar relic from the early Milky Way. Nature 419, 904–906 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Frebel, A. et al. Nucleosynthetic signatures of the first stars. Nature 434, 871–873 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Butcher, H. R. Thorium in G-dwarf stars as a chronometer for the Galaxy. Nature 328, 127–131 (1987).

    Article  ADS  CAS  Google Scholar 

  23. François, P., Spite, M. & Spite, F. On the galactic age problem: determination of the Th/Eu ratio in halo stars. Astron. Astrophys. 274, 821–824 (1993).

    ADS  Google Scholar 

  24. Westin, J., Sneden, C., Gustafsson, B. & Cowan, J. J. The r-process enriched low-metallicity giant HD 115444. Astrophys. J. 530, 783–799 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Johnson, J. A. & Bolte, M. Th ages for metal-poor stars. Astrophys. J. 554, 888–902 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Cowan, J. J. et al. The chemical composition and age of the metal-poor halo star BD+17°3248. Astrophys. J. 572, 861–879 (2002).

    Article  ADS  CAS  Google Scholar 

  27. Honda, S. et al. Spectroscopic studies of extremely metal-poor stars with the Subaru High Dispersion Spectrograph. II. The r-process elements, including thorium. Astrophys. J. 606, 474–498 (2004).

    Article  ADS  Google Scholar 

  28. Ivans, I. et al. Near-UV observations of HD 221170: new insights into the nature of r-process-rich stars. Astrophys. J. (in the press).

  29. Cayrel, R. et al. Measurement of stellar age from uranium decay. Nature 409, 691–692 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957).

    Article  ADS  Google Scholar 

  31. Cameron, A. G. W. Nuclear reactions in stars and nucleosynthesis. Publ. Astron. Soc. Pacif. 69, 201–222 (1957).

    Article  ADS  CAS  Google Scholar 

  32. Busso, M., Gallino, R. & Wasserburg, G. J. Nucleosynthesis in asymptotic giant branch stars: relevance for galactic enrichment and Solar System formation. Annu. Rev. Astron. Astrophys. 37, 239–309 (1999).

    Article  ADS  CAS  Google Scholar 

  33. Cowan, J. J., Thielemann, F. -K. & Truran, J. W. The R-process and nucleochronology. Phys. Rep. 208, 267–394 (1991).

    Article  ADS  CAS  Google Scholar 

  34. Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D. & Meyer, B. S. The r-process and neutrino-heated supernova ejecta. Astrophys. J. 433, 229–246 (1994).

    Article  ADS  CAS  Google Scholar 

  35. Takahashi, K., Witti, J. & Janka, H.-T. Nucleosynthesis in neutrino-driven winds from protoneutron stars. II. The r-process. Astron. Astrophys. 286, 857–869 (1994).

    ADS  CAS  Google Scholar 

  36. Langanke, K. & Martinez-Pinedo, G. Nuclear weak-interaction processes in stars. Rev. Mod. Phys. 75, 819–862 (2003).

    Article  ADS  CAS  Google Scholar 

  37. Thompson, T. A. Magnetic protoneutron star winds and r-process nucleosynthesis. Astrophys. J. 585, L33–L36 (2003).

    Article  ADS  CAS  Google Scholar 

  38. Argast, D., Samland, M., Thielemann, F. -K. & Qian, Y. -Z. Neutron star mergers versus core-collapse supernovae as dominant r-process sites in the early Galaxy Astron. Astrophys. 416, 997–1011 (2004).

    ADS  CAS  Google Scholar 

  39. Norris, J., Ryan, S. & Beers, T. C. Extremely metal-poor stars. VIII. High-resolution, high signal-to-noise ratio analysis of five stars with [Fe/H] <−3.5. Astrophys. J. 561, 1034–1059 (2001).

    Article  ADS  CAS  Google Scholar 

  40. Depagne, E. et al. First Stars. II. Elemental abundances in the extremely metal-poor star CS22949–037. A diagnostic of early massive supernovae. Astron. Astrophys. 390, 187–198 (2002).

    Article  ADS  CAS  Google Scholar 

  41. Aoki, W. et al. The chemical composition of the carbon-rich, extremely metal-poor star CS29498–043: a new class of extremely metal-poor stars with excesses of magnesium and silicon. Astrophys. J. 576, L141–L144.

  42. Qian, Y.-Z. & Wasserburg, G. Determination of nucleosynthetic yields of supernovae and very massive stars from abundances in metal-poor stars. Astrophys. J. 567, 515–531 (2002).

    Article  ADS  CAS  Google Scholar 

  43. Qian, Y.-Z., Sargent, W. L. W. & Wasserburg, G. The prompt inventory from very massive stars and elemental abundances in Lyα systems. Astrophys. J. 569, L61–L64 (2002).

    Article  ADS  CAS  Google Scholar 

  44. Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K. & Maeda, K. The first chemical enrichment in the universe and the formation of the hyper iron-poor stars. Science 309, 451–453 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Mathews, G. J., Bazan, G. & Cowan, J. J. Evolution of heavy-element abundances as a constraint on sites for neutron-capture nucleosynthesis. Astrophys. J. 391, 719–735 (1992).

    Article  ADS  CAS  Google Scholar 

  46. Wheeler, C., Cowan, J. J. & Hillebrandt, W. The r-process in collapsing O/Ne/Mg cores. Astrophys. J. 493, L101–L104 (1998).

    Article  ADS  CAS  Google Scholar 

  47. Ishimaru, Y. & Wanajo, S. Enrichment of the r-process element europium in the galactic halo. Astrophys. J. 511, L33–L36 (1999).

    Article  ADS  CAS  Google Scholar 

  48. Lawler, J. E., Sneden, C. & Cowan, J. J. Improved atomic data for Ho II and new holmium abundances for the Sun and three metal-poor halo stars. Astrophys. J. 604, 850–860 (2004).

    Article  ADS  CAS  Google Scholar 

  49. Lawler, J. E., den Hartog, E. A., Sneden, C. & Cowan, J. J. Sm transition probabilities and abundances. Astrophys. J. (in the press).

  50. Sneden, C. et al. Europium isotopic abundances in very metal-poor stars. Astrophys. J. 566, L25–L28 (2002).

    Article  ADS  CAS  Google Scholar 

  51. Aoki, W., Honda, S., Beers, T. C. & Sneden, C. Measurement of the europium isotope ratio for the extremely metal poor, r-process-enhanced star CS31082–001. Astrophys. J. 586, 506–511 (2003).

    Article  ADS  CAS  Google Scholar 

  52. Lambert, D. L. & Allende Prieto, C. The isotopic mixture of barium in the metal-poor subgiant HD140283. Mon. Not. R. Astron. Soc. 335, 325–334 (2002).

    Article  ADS  CAS  Google Scholar 

  53. Johnson, J. A., & Bolte, M. The r-process in the early Galaxy. Astrophys. J. 579, 616–625 (2002).

    Article  ADS  CAS  Google Scholar 

  54. Wasserburg, G. J., Busso, M. & Gallino, R. Abundances of actinides and short-lived nonactinides in the interstellar medium: diverse supernova sources for the r-processes. Astrophys. J. 466, L109–L113 (1996).

    Article  ADS  CAS  Google Scholar 

  55. Wasserburg, G. J. & Qian, Y.-Z. Prompt iron enrichment, two r-process components, and abundances in very metal-poor stars. Astrophys. J. 529, L21–L24 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Travaglio, C. et al. Galactic evolution of Sr, Y and Zr: a multiplicity of nucleosynthesis processes. Astrophys. J. 601, 864–884 (2004).

    Article  ADS  CAS  Google Scholar 

  57. Fröhlich, C. et al. Neutrino-induced nucleosynthesis of A > 64 nuclei: the νp-process. Preprint astro-ph/0511376 at 〈http://arxiv.org/abs/〉 (2005).

  58. Shetrone, M. et al. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. I. Nucleosynthesis and abundance ratios. Astron. J. 125, 684–706 (2003).

    Article  ADS  CAS  Google Scholar 

  59. Prochaska, J. X., Howk, J. C. & Wolfe, A. M. The elemental abundance pattern in a galaxy at z=2.626. Nature 423, 57–59 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Simmerer, J. et al. The rise of the s-process in the Galaxy. Astrophys. J. 617, 1091–1114 (2004).

    Article  ADS  CAS  Google Scholar 

  61. Cowan, J. J. et al. Hubble Space Telescope observations of heavy elements in metal-poor galactic halo stars. Astrophys. J. 627, 238–250 (2005).

    Article  ADS  CAS  Google Scholar 

  62. O'Brien, S. et al. Neutron capture cross section of 139La. Phys. Rev. C 68, 035801 (2003).

    Article  ADS  Google Scholar 

  63. Woolf, V. M., Tomkin, J. & Lambert, D. L. The r-process element europium in galactic disk F and G dwarf stars. Astrophys. J. 453, 660–672 (1995).

    Article  ADS  CAS  Google Scholar 

  64. Cayrel, R. et al. First stars V — abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 416, 1117–1138 (2004).

    Article  ADS  CAS  Google Scholar 

  65. Arnone, E., Ryan, S. G., Argast, D., Norris, J. E. & Beers, T. C. Mg abundances in metal-poor halo stars as a tracer of early Galactic mixing. Astron. Astrophys. 430, 507–522 (2005).

    Article  ADS  CAS  Google Scholar 

  66. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. 101, 181–235 (1995).

    Article  ADS  CAS  Google Scholar 

  67. Thielemann, F.-K. et al. Type II supernova nucleosynthesis and early galactic evolution. Mem. Soc. Astron. Ital. 71, 483–498 (2000).

    ADS  CAS  Google Scholar 

  68. Schatz, H. et al. Thorium and uranium chronometers applied to CS31082–001. Astrophys. J. 579, 626–638 (2002).

    Article  ADS  CAS  Google Scholar 

  69. Wanajo, S., Itoh, N., Ishimaru, Y., Nozawa, S. & Beers, T. C. The r-process in the neutrino winds of core-collapse supernovae and U–Th cosmochronology. Astrophys. J. 577, 853–865 (2002).

    Article  ADS  CAS  Google Scholar 

  70. Dauphas, N. The U/Th production ratio and the age of the Milky Way from meteorites and galactic halo stars. Nature 435, 1203–1205 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Pagel, B. E. J. in Evolutionary Phenomena in Galaxies (eds Beckman, J. E. & Pagel, B. E. J.) 201–223 (Cambridge Univ. Press, 1989).

    Google Scholar 

  72. Pfeiffer, B., Kratz, K. -L. & Thielemann, F. -K. Analysis of the solar-system r-process abundance pattern with the new ETFSI-Q mass formula. Z. Phys. A 357, 235 (1997).

    Article  ADS  CAS  Google Scholar 

  73. Cowan, J. J. et al. r-process abundances and chronometers in metal-poor stars. Astrophys. J. 521, 194–205 (1999).

    Article  ADS  CAS  Google Scholar 

  74. Sneden, C. et al. Evidence of multiple r-process sites in the early Galaxy: New observations of CS22892–052. Astrophys. J. 533, L139–L142 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Sneden, C. et al. Neutron-capture element abundances in the globular cluster M15. Astrophys. J. 536, L85–L88 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Krauss, L. M. & Chaboyer, B. Age estimates of globular clusters in the Milky Way: constraints on cosmology. Science 299, 65–69 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Jimenez, R., Verde, L., Treu, T. & Stern, S. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background. Astrophys. J. 593, 622–629 (2003).

    Article  ADS  CAS  Google Scholar 

  78. Tegmark, M. et al. Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004).

    Article  ADS  Google Scholar 

  79. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. 116, 1009–1038 (1998).

  80. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  81. Plez, B. et al. Lead abundance in the uranium star CS31082–001. Astron. Astrophys. 428, L9–L12 (2004).

    Article  ADS  CAS  Google Scholar 

  82. Kratz, K.-L., Pfeiffer, B., Cowan, J. J. & Sneden, C. R-process chronometers. New Astron. Rev. 48, 105–108 (2004).

    Article  ADS  CAS  Google Scholar 

  83. Kurucz, R. L., Furenlid, I. & Brault, J. T. L. Solar flux atlas from 296 to 1300 nm. National Solar Observatory Atlas (National Solar Observatory, Sunspot, New Mexico, 1984).

    Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memory of Al Cameron, who was a giant in this field and who taught us much about nuclear astrophysics and life. We thank our colleagues for discussions and insights, and Jason Collier and Randi Worhatch for their help with the paper. We also acknowledge support from the National Science Foundation and the Space Telescope Science Institute.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, J., Sneden, C. Heavy element synthesis in the oldest stars and the early Universe. Nature 440, 1151–1156 (2006). https://doi.org/10.1038/nature04807

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04807

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing