Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cosmology from start to finish

Abstract

Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A map projection of the full-sky CMB anisotropy observed by the Wilkinson Microwave Anisotropy Probe (WMAP)11.
Figure 2: The angular power spectrum of the WMAP data, supplemented by CBI and ACBAR data at high multipole moments (smaller angular scales)10,11.
Figure 3: The supernova Ia Hubble diagram48.
Figure 4: The galaxy redshift–space correlation function reveals baryon acoustic oscillations.

Similar content being viewed by others

References

  1. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003).

    Article  ADS  Google Scholar 

  2. Ostriker, J. P. & Steinhardt, P. J. New light on dark matter. Science 300, 1909–1913 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gaitskell, R. J. Direct detection of dark matter. Annu. Rev. Nucl. Part. Sci. 54, 315–359 (2004).

    Article  ADS  CAS  Google Scholar 

  4. Bertone, G., Hooper, D. & Silk, J. Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005).

    Article  ADS  CAS  Google Scholar 

  5. Ellis, J., Ferstl, A. & Olive, K. A. Theoretical aspects of dark matter detection. Space Sci. Rev. 100, 235–246 (2002).

    Article  ADS  CAS  Google Scholar 

  6. Ellis, J., Olive, K. A., Santoso, Y. & Spanos, V. C. Update on the direct detection of supersymmetric dark matter. Phys. Rev. D 71, 095007 (2005).

    Article  ADS  Google Scholar 

  7. Guth, A. H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982).

    Article  ADS  Google Scholar 

  9. Linde, A. D. Coleman–Weinberg theory and the new inflationary universe scenario. Phys. Lett. B 114, 431–435 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  10. Hinshaw, G. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The angular power spectrum. Astrophys. J. Suppl. Ser. 148, 135–159 (2003).

    Article  ADS  Google Scholar 

  11. Bennett, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148, 1–27 (2003).

    Article  ADS  Google Scholar 

  12. Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822 (1916).

    Article  CAS  Google Scholar 

  13. Turner, M. S. & White, M. Dependence of inflationary reconstruction upon cosmological parameters. Phys. Rev. D 53, 6822–6828 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Bennett, C. L. et al. Four-year COBE DMR cosmic microwave background observations: Maps and basic results. Astrophys. J. Lett. 464, L1–L4 (1996).

    Article  ADS  Google Scholar 

  15. Boyle, L. A., Steinhardt, P. J. & Turok, N. Inflationary predictions reconsidered. <astro-ph/0507455> (2005).

  16. Report of the Task Force on Cosmic Microwave Background Research. http://www.nsf.gov/mps/ast/tfcr.jsp (2005).

  17. Steinhardt, P. J. & Turok, N. The cyclic model simplified. New Astron. Rev. 49, 43–57 (2005).

    Article  ADS  Google Scholar 

  18. Colgate, S. A. Supernovae as a standard candle for cosmology. Astrophys. J. 232, 404–408 (1979).

    Article  ADS  Google Scholar 

  19. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  20. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  21. Dunlop, J. et al. A 3.5-Gyr-old galaxy at redshift 1.55. Nature 381, 581–584 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Seife, C. Illuminating the dark universe. Science 302, 2038–2039 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Astier, P. et al. (The SNLS Collaboration) The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. <astro-ph/0510447> (2005).

  24. Dvali, G. R., Gabadadze, G. & Porrati, M. 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208–214 (2000).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Deffayet, C., Dvali, G. R. & Gabadadze, G. Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 65, 044023 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  26. Carroll, S. M., Duvvuri, V., Trodden, M. & Turner, M. S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004).

    Article  ADS  Google Scholar 

  27. Nojiri, S. & Odintsov, S. D. Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration. Phys. Rev. D 68, 123512 (2003).

    Article  ADS  Google Scholar 

  28. Arkani-Hamed, N., Cheng, H. C., Luty, M. A. & Mukohyama, S. Ghost condensation and a consistent IR modification of gravity. J. High Energy Phys. 5, 74 (2004).

    Article  ADS  Google Scholar 

  29. Arkani-Hamed, N., Creminelli, P., Mukohyama, S. & Zaldarriaga, M. Ghost inflation. J. Cosmol. Astropart. Phys. 4, 001 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  30. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Peebles, P. K. E. & Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. Zlatev, I., Wang, L. M. & Steinhardt, P. J. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999).

    Article  ADS  CAS  Google Scholar 

  33. Wetterich, C. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668–696 (1988).

    Article  ADS  Google Scholar 

  34. Peebles, P. J. E. & Ratra, B. Cosmology with a time-variable cosmological ‘constant’. Astrophys. J. Lett. 325, L17–L20 (1988).

    Article  ADS  Google Scholar 

  35. Carroll, S. M. Quintessence and the rest of the world: suppressing long-range interactions. Phys. Rev. Lett. 81, 3067–3070 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Armendariz-Picon, C., Mukhanov, V. & Steinhardt, P. J. Essentials of k-essence. Phys. Rev. D 63, 103510 (2001).

    Article  ADS  Google Scholar 

  37. Will, C. M. The confrontation between general relativity and experiment. Pramana 63, 731–740 (2004).

    Article  ADS  Google Scholar 

  38. Bennett, C. L. Astrophysical observations: lensing and eclipsing Einstein's theories. Science 307, 879–884 (2005).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  39. Randall, L. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Weinberg, S. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607–2610 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Refregier, A. Weak gravitational lensing by large-scale structure. Annu. Rev. Astron. Astrophys. 41, 645–668 (2003).

    Article  ADS  Google Scholar 

  42. Van Waerbeke, L., Mellier, Y. & Hoekstra, H. Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey. Astron. Astrophys. 429, 75–84 (2005).

    Article  ADS  Google Scholar 

  43. Hodapp, K. W. et al. Design of the Pan-STARRS telescopes. Astron. Nachr. 325, 636–642 (2004).

    Article  ADS  Google Scholar 

  44. Alcock, C. & Paczynski, B. An evolution free test for non-zero cosmological constant. Nature 281, 358–359 (1979).

    Article  ADS  Google Scholar 

  45. Haiman, Z., Mohr, J. & Holder, G. Constraints on cosmological parameters from future galaxy cluster surveys. Astrophys. J. 553, 545–561 (2001).

    Article  ADS  Google Scholar 

  46. Turner, M. S. The new cosmology: mid-term report card for inflation. Ann. Henri Poincare 4, S333–S346 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  47. National Research Council. Connecting Quarks with the Cosmos. Eleven: Science Questions for the New Century (The National Academies Press, Washington DC, 2003)

  48. Riess, A. G. et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004)

    Article  ADS  CAS  Google Scholar 

  49. Hu, W., Sugiyama, N. & Silk, J. The physics of microwave background anisotropies. Nature 386, 37–43 (1997).

    Article  ADS  CAS  Google Scholar 

  50. Leibundgut, B. Cosmological implications from observations of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 39, 67–98 (2001).

    Article  ADS  CAS  Google Scholar 

  51. Phillips, M. M. The absolute magnitudes of Type IA supernovae. Astrophys. J. Lett. 413, L105–L108 (1993).

    Article  ADS  Google Scholar 

  52. Phillips, M. M. et al. The reddening-free decline rate versus luminosity relationship for Type IA supernovae. Astrophys. J. 118, 1766–1776 (1999).

    Google Scholar 

  53. Riess, A. G., Press, W. H. & Kirshner, R. P. A precise distance indicator: Type IA supernova multicolor light-curve shapes. Astrophys. J. 473, 88–109 (1996).

    Article  ADS  Google Scholar 

  54. Peebles P. J. E. & Yu, J. T. Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815–836 (1970).

    Article  ADS  Google Scholar 

  55. Eisenstein, D. & Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 496, 605–614 (1998).

    Article  ADS  CAS  Google Scholar 

  56. Eisenstein, D. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005).

    Article  ADS  Google Scholar 

  57. Cole, S. et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505–534 (2005).

    Article  ADS  Google Scholar 

  58. Blake, C. & Glazebrook, K. Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler. Astrophys. J. 594, 665–673 (2003).

    Article  ADS  CAS  Google Scholar 

  59. Seo, H.-J. & Eisenstein, D. J. Baryonic acoustic oscillations in simulated galaxy redshift surveys. Astrophys. J. 633, 575–588 (2005).

    Article  ADS  Google Scholar 

  60. Eisenstein, D. J., Hu, W. & Tegmark, M. Cosmic complementarity: H0 and ΩM from combining cosmic microwave background experiments and redshift surveys. Astrophys. J. Lett. 504, L57–L60 (1998).

    Article  ADS  Google Scholar 

  61. Linder, E. V. Baryon oscillations as a cosmological probe. Phys. Rev. D 68, 083504 (2003).

    Article  ADS  Google Scholar 

  62. Hu, W. & Haiman, Z. Redshifting rings of power. Phys. Rev. D 68, 3004 (2003).

    Google Scholar 

  63. Angulo, R. et al. Constraints on the dark energy equation of state from the imprint of baryons on the power spectrum of clusters. Mon. Not. R. Astron. Soc. Lett. 362, L25–L29 (2005).

    Article  ADS  Google Scholar 

  64. Coles, P. Galaxy formation with a local bias. Mon. Not. R. Astron. Soc. 262, 1065–1075 (1993).

    Article  ADS  Google Scholar 

  65. Scherrer, R. J. & Weinberg, D. H. Constraints on the effects of locally biased galaxy formation. Astrophys. J. 504, 607–611 (1998).

    Article  ADS  Google Scholar 

  66. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    Article  ADS  CAS  Google Scholar 

  67. White, M. Baryon oscillations. Astropart. Phys. 24, 334–344 (2005).

    Article  ADS  Google Scholar 

  68. Eisenstein, D. J. & White, M. Theoretical uncertainty in baryon oscillations. Phys. Rev. D 70, 103523 (2004).

    Article  ADS  Google Scholar 

  69. Glazebrook, K. & Blake, C. A. Measuring the cosmic evolution of dark energy with baryonic oscillations in the galaxy power spectrum. Astrophys. J. 631, 1–20 (2005).

    Article  ADS  CAS  Google Scholar 

  70. Glazebrook, K., Baldry, I., Moos, W., Kruk, J. & McCandliss, S. Monster redshift surveys through dispersive slitless imaging: The Baryon Oscillation Probe. New Astron. Rev. 49, 374–378 (2005).

    Article  ADS  CAS  Google Scholar 

  71. Bassett, B. A., Nichol, R. C. & Eisenstein, D. J. WFMOS — Sounding the dark cosmos. Astron. Geophys. 46, 5.26–5.29 (2005).

    Article  ADS  Google Scholar 

  72. Hill, G. J. et al. in Ground-Based Instrumentation for Astronomy (eds Moorwood, A. F. M. & Masanori, I.) Proc. SPIE 5492, 251–261 (2004).

    Book  Google Scholar 

  73. Glazebrook, K. et al. A high abundance of massive galaxies 3–6 billion years after the Big Bang. Nature 430, 181–184 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg. nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, C. Cosmology from start to finish. Nature 440, 1126–1131 (2006). https://doi.org/10.1038/nature04803

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04803

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing