Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wave and defect dynamics in nonlinear photonic quasicrystals

Abstract

Quasicrystals are unique structures with long-range order but no periodicity. Their properties have intrigued scientists ever since their discovery1 and initial theoretical analysis2,3. The lack of periodicity excludes the possibility of describing quasicrystal structures with well-established analytical tools, including common notions like Brillouin zones and Bloch's theorem. New and unique features such as fractal-like band structures4,5,6,7 and ‘phason’ degrees of freedom8 are introduced. In general, it is very difficult to directly observe the evolution of electronic waves in solid-state atomic quasicrystals, or the dynamics of the structure itself. Here we use optical induction9,10,11 to create two-dimensional photonic quasicrystals, whose macroscopic nature allows us to explore wave transport phenomena. We demonstrate that light launched at different quasicrystal sites travels through the lattice in a way equivalent to quantum tunnelling of electrons in a quasiperiodic potential. At high intensity, lattice solitons are formed. Finally, we directly observe dislocation dynamics when crystal sites are allowed to interact with each other. Our experimental results apply not only to photonics, but also to other quasiperiodic systems such as matter waves in quasiperiodic traps12, generic pattern-forming systems as in parametrically excited surface waves13, liquid quasicrystals14, and the more familiar atomic quasicrystals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photonic quasicrystal and its extended Brillouin zone map.
Figure 2: Discrete diffraction and lattice solitons in a photonic quasicrystal.
Figure 3: Creation and healing of a dislocation in a decagonal quasicrystal.
Figure 4: Creation and healing of a dislocation in a periodic hexagonal crystal.

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  ADS  CAS  Google Scholar 

  2. Levine, D., Lubensky, T. C., Ostlund, S., Ramaswamy, S. & Steinhardt, P. J. Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520–1523 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Socolar, J. E. S., Lubensky, T. C. & Steinhardt, P. J. Phonons, phasons, and dislocations in quasicrystals. Phys. Rev. B 34, 3345–3360 (1986)

    Article  ADS  CAS  Google Scholar 

  4. Rotenberg, E., Theis, W., Horn, K. & Gille, P. Quasicrystalline valence bands in decagonal AlNiCo. Nature 406, 602–605 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kaliteevski, M. A. et al. Two-dimensional Penrose-tiled photonic quasicrystals: from diffraction pattern to band structure. Nanotechnology 11, 274–280 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Dal Negro, L. et al. Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett. 90, 055501 (2003)

    Article  ADS  Google Scholar 

  7. Chan, Y. S., Chan, C. T. & Liu, Z. Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956–959 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Edagawa, K. & Suzuki, K. High resolution transmission electron microscopy observation of thermally fluctuating phasons in decagonal Al-Cu-Co. Phys. Rev. Lett. 85, 1674–1677 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, 046602 (2002)

    Article  ADS  Google Scholar 

  10. Fleischer, J. W., Carmon, T., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003)

    Article  ADS  PubMed  Google Scholar 

  11. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Guidoni, L., Triché, C., Verkerk, P. & Grynberg, G. Quasiperiodic optical lattices. Phys. Rev. Lett. 79, 3363–3366 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Lifshitz, R. & Petrich, D. M. Theoretical model for Faraday waves with multiple-frequency forcing. Phys. Rev. Lett. 79, 1261–1264 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Clausen, C. B., Kivshar, Y. S., Bang, O. & Christiansen, P. L. Quasiperiodic envelope solitons. Phys. Rev. Lett. 83, 4740–4743 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993–996 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Bratfalean, R. T., Peacock, A. C., Broderick, N. G. R. & Gallo, K. Harmonic generation in a two-dimensional nonlinear quasicrystal. Opt. Lett. 30, 424–426 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lifshitz, R., Arie, A. & Bahabad, A. Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett. 95, 133901 (2005)

    Article  ADS  PubMed  Google Scholar 

  19. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Martin, H., Eugenieva, E. D., Chen, Z. & Christodoulides, D. N. Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Phys. Rev. Lett. 92, 123902 (2004)

    Article  ADS  PubMed  Google Scholar 

  21. Bartal, G. et al. Brillouin-zone spectroscopy of nonlinear photonic lattices. Phys. Rev. Lett. 94, 163902 (2005)

    Article  ADS  PubMed  Google Scholar 

  22. Russell, P. St J. Optics of Floquet-Bloch waves in dielectric gratings. Appl. Phys. B 39, 231–246 (1986)

    Article  ADS  Google Scholar 

  23. Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchison, J. S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Segev, M., Valley, G. C., Crosignani, B., DiPorto, P. & Yariv, A. Steady-state spatial screening solitons in photorefractive materials with external applied field. Phys. Rev. Lett. 73, 3211–3214 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Christodoulides, D. & Carvalho, M. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12, 1628–1633 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Efremidis, N. K. et al. Two-dimensional optical lattice solitons. Phys. Rev. Lett. 91, 213906 (2003)

    Article  ADS  PubMed  Google Scholar 

  29. Barak, G. & Lifshitz, R. Dislocation dynamics in a dodecagonal quasiperiodic structure. Phil. Mag. 86, 1059–1064 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton, Princeton Univ. Press, 1995)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation, the Israel-USA Binational Science Foundation and the German-Israeli DIP Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. Fleischer.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, B., Bartal, G., Segev, M. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006). https://doi.org/10.1038/nature04722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04722

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing