Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parametric oscillation in vertical triple microcavities

Abstract

Optical parametric oscillation is a nonlinear process that enables coherent generation of ‘signal’ and ‘idler’ waves, shifted in frequency from the pump wave1,2. Efficient parametric conversion is the paradigm for the generation of twin or entangled photons for quantum optics applications such as quantum cryptography3,4, or for the generation of new frequencies in spectral domains not accessible by existing devices. Rapid development in the field of quantum information requires monolithic, alignment-free sources that enable efficient coupling into optical fibres and possibly electrical injection. During the past decade, much effort has been devoted to the development of integrated devices for quantum information5,6,7 and to the realization of all-semiconductor parametric oscillators8,9. Nevertheless, at present optical parametric oscillators typically rely on nonlinear crystals placed into complex external cavities, and pumped by powerful external lasers. Long interaction lengths are typically required and the phase mismatch between the parametric waves propagating at different velocities2 results in poor parametric conversion efficiencies. Here we report the demonstration of parametric oscillation in a monolithic semiconductor triple microcavity with signal, pump and idler waves propagating along the vertical direction of the nanostructure. Alternatively, signal and idler beams can also be collected at finite angles, allowing the generation of entangled photon pairs. The pump threshold intensity is low enough to envisage the realization of an all-semiconductor electrically pumped micro-parametric oscillator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the triple-microcavity structure.
Figure 2: Angle-resolved emission measured in transmission geometry.
Figure 3: Emission spectrum of the optical parametric oscillator.
Figure 4: Pump-power dependence of the optical parametric oscillator.

Similar content being viewed by others

References

  1. Shen, Y. R. The Principles of Nonlinear Optics (Wiley Inter-Science, Hoboken, 2003)

    MATH  Google Scholar 

  2. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interaction between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962)

    Article  ADS  CAS  Google Scholar 

  3. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Gisin, N., Robordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  5. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Tanzilli, S. et al. Highly efficient photon-pair source using a periodically poled lithium niobate waveguide. Electron. Lett. 37, 26–28 (2001)

    Article  CAS  Google Scholar 

  8. Haïdar, R., Forget, N. & Rosencher, E. Optical parametric oscillation in microcavities based on isotropic semiconductors: a theoretical study. IEEE J. Quant. Elec. 39, 569–576 (2003)

    Article  ADS  Google Scholar 

  9. Vodopyanov, K. L. et al. Optical parametric oscillation in quasi-phase-matched GaAs. Opt. Lett. 29, 1912–1914 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Fiore, A., Berger, V., Rosencher, E., Bravetti, P. & Nagle, J. Phase matching using an isotropic nonlinear optical material. Nature 391, 463–466 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Baudrier-Raybaut, M., Haïdar, R., Kupecek, Ph., Lemasson, Ph. & Rosencher, E. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 432, 374–376 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Myers, L. E., Miller, G. D., Eckardt, R. C., Fejer, M. M. & Byer, R. L. Quasi-phase-matched 1.064-µm-pumped optical parametric oscillator in bulk periodically poled LiNbO3 . Opt. Lett. 20, 52–54 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Mertz, J., Debuisschert, T., Heidmann, A., Fabre, C. & Giacobino, E. Improvements in the observed intensity correlation of optical parametric oscillator twin beams. Opt. Lett. 16, 1234–1236 (1991)

    Article  ADS  CAS  Google Scholar 

  14. Teja, J. & Wong, N. C. Twin-beam generation in a triply resonant dual-cavity optical parametric oscillator. Opt. Exp. 2, 65–71 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Savvidis, P. G. et al. Angle-resonant polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Dasbach, G. et al. Polarization inversion via parametric parametric scattering in quasi-one-dimensional microcavities. Phys. Rev. B 71, 161308(R) (2005)

    Article  ADS  Google Scholar 

  18. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Ciuti, C., Schwendimann, P., Deveaud, B. & Quattropani, A. Theory of the angle-resonant polariton amplifier. Phys. Rev. B 62, R4825–R4828 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Diederichs, C. & Tignon, J. Design for a triply resonant vertical emitting micro-optical parametric oscillator. Appl. Phys. Lett. 87, 251107 (2005)

    Article  ADS  Google Scholar 

  21. Stanley, R. P., Houdré, R., Oesterle, U., Ilegems, M. & Weisbuch, C. Coupled semiconductor microcavities. Appl. Phys. Lett. 65, 2093–2095 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Pellandini, P. et al. Dual-wavelength laser emission from a coupled semiconductor microcavity. Appl. Phys. Lett. 71, 864–866 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Michler, P., Hilpert, M. & Reiner, G. Dynamics of dual-wavelength emission from a coupled semiconductor microcavity laser. Appl. Phys. Lett. 70, 2073–2075 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Armitage, A. et al. Optically induced splitting of bright excitonic states in coupled quantum microcavities. Phys. Rev. B 57, 14877–14881 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Savvidis, P. G. et al. Off-branch polaritons and multiple scattering in semiconductor microcavities. Phys. Rev. B 64, 075311 (2001)

    Article  ADS  Google Scholar 

  26. Ciuti, C. Branch-entangled polariton pairs in planar microcavities and photonic wires. Phys. Rev. B 69, 245304 (2004)

    Article  ADS  Google Scholar 

  27. Ou, Z. Y. & Mandel, L. Further evidence of nonclassical behavior in optical interference. Phys. Rev. Lett. 62, 2941–2944 (1989)

    Article  ADS  CAS  Google Scholar 

  28. Ou, Z. Y. Quantum theory of fourth-order interference. Phys. Rev. A. 37, 1607–1619 (1988)

    Article  ADS  CAS  Google Scholar 

  29. Tignon, J., Ciuti, C., Dasbach, G., & Diederichs, C. Micro-optical parametric oscillator with coupled cavities. French patent application number 05/05 708 (filed 06 June 2005).

Download references

Acknowledgements

This work was financially supported by the ‘Clermont 2’ project and the Délégation Générale pour l'Armement (DGA). LPA de l'ENS is ‘Unité Mixte de Recherche Associée au CNRS et aux Universités Paris 6 et 7’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tignon.

Ethics declarations

Competing interests

J. Tignon, C. Ciuti, G. Dasbach and C. Diederichs have filed a patent based on this work (French patent application number 05/05 708; filing date 06 June 2005).

Supplementary information

Supplementary Figure

Scheme for the electrical injection. This file contains additional information on the electrical injection of the triple microcavity: a sketch of the electrically injected system, the dielectric structure and the calculated reflectivity. (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diederichs, C., Tignon, J., Dasbach, G. et al. Parametric oscillation in vertical triple microcavities. Nature 440, 904–907 (2006). https://doi.org/10.1038/nature04602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04602

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing