Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

KATP channels as molecular sensors of cellular metabolism

Abstract

In responding to cytoplasmic nucleotide levels, ATP-sensitive potassium (KATP) channel activity provides a unique link between cellular energetics and electrical excitability. Over the past ten years, a steady drumbeat of crystallographic and electrophysiological studies has led to detailed structural and kinetic models that define the molecular basis of channel activity. In parallel, the uncovering of disease-causing mutations of KATP has led to an explanation of the molecular basis of disease and, in turn, to a better understanding of the structural basis of channel function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The KATP channel is formed from two dissimilar subunits.
Figure 2: ATP-dependent gating in high definition.
Figure 3: Binding sites for opening ligands.
Figure 4: Nucleotide regulation of KATP activity.
Figure 5: Molecular defects of neonatal diabetes.

Similar content being viewed by others

References

  1. Miki, T. & Seino, S. Roles of KATP channels as metabolic sensors in acute metabolic changes. J. Mol. Cell. Cardiol. 38, 917–925 (2005).

    CAS  PubMed  Google Scholar 

  2. Bryan, J., Vila-Carriles, W. H., Zhao, G., Babenko, A. P. & Aguilar-Bryan, L. Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 53 (Suppl. 3), S104–S112 (2004).

    CAS  PubMed  Google Scholar 

  3. Ashcroft, F. M. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115, 2047–2058 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Flagg, T. P. & Nichols, C. Sarcolemmal KATP channels: what do we really know? J. Mol. Cell. Cardiol. 39, 61–70 (2005).

    CAS  PubMed  Google Scholar 

  5. Inagaki, N. et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270, 1166–1170 (1995).

    ADS  CAS  PubMed  Google Scholar 

  6. Inagaki, N. et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16, 1011–1017 (1996).

    CAS  PubMed  Google Scholar 

  7. Yamada, M. et al. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J. Physiol. (Lond.) 499, 715–720 (1997).

    CAS  Google Scholar 

  8. Shyng, S. & Nichols, C. G. Octameric stoichiometry of the KATP channel complex. J. Gen. Physiol. 110, 655–664 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Clement, J. P. IV et al. Association and stoichiometry of KATP channel subunits. Neuron 18, 827–838 (1997).

    CAS  PubMed  Google Scholar 

  10. Neagoe, I. & Schwappach, B. Pas de deux in groups of four—the biogenesis of KATP channels. J. Mol. Cell. Cardiol. 38, 887–894 (2005).

    CAS  PubMed  Google Scholar 

  11. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    ADS  CAS  PubMed  Google Scholar 

  12. Nishida, M. & MacKinnon, R. Structural basis of inward rectification. Cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111, 957–965 (2002).

    CAS  PubMed  Google Scholar 

  13. Pegan, S. et al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nature Neurosci. 8, 279–287 (2005).

    CAS  PubMed  Google Scholar 

  14. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kuo, A., Domene, C., Johnson, L. N., Doyle, D. A. & Venien-Bryan, C. Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography. Structure 13, 1463–1472 (2005).

    CAS  PubMed  Google Scholar 

  16. Antcliff, J. F., Haider, S., Proks, P., Sansom, M. S. & Ashcroft, F. M. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J. 24, 229–239 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haider, S., Antcliff, J. F., Proks, P., Sansom, M. S. & Ashcroft, F. M. Focus on Kir6.2: a key component of the ATP-sensitive potassium channel. J. Mol. Cell. Cardiol. 38, 927–936 (2005).

    CAS  PubMed  Google Scholar 

  18. Enkvetchakul, D. et al. Functional characterization of a prokaryotic Kir channel. J. Biol. Chem. 279, 47076–47080 (2004).

    CAS  PubMed  Google Scholar 

  19. Enkvetchakul, D., Jeliazkova, I. & Nichols, C. G. Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 280, 35785–35788 (2005).

    CAS  PubMed  Google Scholar 

  20. Baukrowitz, T. et al. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282, 1141–1144 (1998).

    ADS  CAS  PubMed  Google Scholar 

  21. Fan, Z. & Makielski, J. C. Anionic phospholipids activate ATP-sensitive potassium channels. J. Biol. Chem. 272, 5388–5395 (1997).

    CAS  PubMed  Google Scholar 

  22. Shyng, S. L. & Nichols, C. G. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282, 1138–1141 (1998).

    ADS  CAS  PubMed  Google Scholar 

  23. Chan, K. W., Zhang, H., Mishahi, T. & Logothetis, D. E. Characterization of the interaction between the N-terminal transmembrane domain of the sulfonylurea receptor (SUR1) and Kir6.2. Biophys. J. 82, 590a (2002).

    Google Scholar 

  24. Babenko, A. P. & Bryan, J. SUR-dependent modulation of KATP channels by an N-terminal KIR6.2 peptide. Defining intersubunit gating interactions. J. Biol. Chem. 277, 43997–44004 (2002).

    CAS  PubMed  Google Scholar 

  25. Babenko, A. P. & Bryan, J. SUR domains that associate with and gate KATP pores define a novel gatekeeper. J. Biol. Chem. 278, 41577–41580 (2003).

    CAS  PubMed  Google Scholar 

  26. Campbell, J. D., Proks, P., Lippiat, J. D., Sansom, M. S. & Ashcroft, F. M. Identification of a functionally important negatively charged residue within the second catalytic site of the SUR1 nucleotide-binding domains. Diabetes 53 (Suppl. 3), S123–S127 (2004).

    CAS  PubMed  Google Scholar 

  27. Hung, L. W. et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707 (1998).

    ADS  CAS  PubMed  Google Scholar 

  28. Hopfner, K. P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).

    CAS  PubMed  Google Scholar 

  29. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002).

    ADS  CAS  PubMed  Google Scholar 

  30. Matsuo, M., Kioka, N., Amachi, T. & Ueda, K. ATP binding properties of the nucleotide-binding folds of SUR1. J. Biol. Chem. 274, 37479–37482 (1999).

    CAS  PubMed  Google Scholar 

  31. Hough, E., Mair, L., Mackenzie, W. & Sivaprasadarao, A. Expression, purification, and evidence for the interaction of the two nucleotide-binding folds of the sulphonylurea receptor. Biochem. Biophys. Res. Commun. 294, 191–197 (2002).

    CAS  PubMed  Google Scholar 

  32. Mikhailov, M. V. & Ashcroft, S. J. H. Interactions of the sulfonylurea receptor 1 subunit in the molecular assembly of β-cell K-ATP channels. J. Biol. Chem. 275, 3360–3364 (2000).

    CAS  PubMed  Google Scholar 

  33. Mikhailov, M. V. et al. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2–SUR1. EMBO J. 24, 4166–4175 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Proks, P., Capener, C. E., Jones, P. & Ashcroft, F. M. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    ADS  CAS  PubMed  Google Scholar 

  36. Enkvetchakul, D. & Nichols, C. G. Gating mechanism of KATP channels: function fits form. J. Gen. Physiol. 122, 471–480 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sackin, H., Nanazashvili, M., Palmer, L. G., Krambis, M. & Walters, D. E. Structural locus of the pH gate in the Kir1.1 inward rectifier channel. Biophys. J. 88, 2597–2606 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Drain, P., Geng, X. & Li, L. Concerted gating mechanism underlying KATP channel inhibition by ATP. Biophys. J. 86, 2101–2112 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loussouarn, G., Phillips, L. R., Masia, R., Rose, T. & Nichols, C. G. Flexibility of the Kir6.2 inward rectifier K+ channel pore. Proc. Natl Acad. Sci. USA 98, 4227–4232 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, T., Nguyen, B., Zhang, X. & Yang, J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22, 571–580 (1999).

    CAS  PubMed  Google Scholar 

  41. Domene, C., Doyle, D. A. & Venien-Bryan, C. Modeling of an ion channel in its open conformation. Biophys. J. 89, L01–L03 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Phillips, L. R. & Nichols, C. G. Ligand-induced closure of inward rectifier Kir6.2 channels traps spermine in the pore. J. Gen. Physiol. 122, 795–804 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Phillips, L. R., Enkvetchakul, D. & Nichols, C. G. Gating dependence of inner pore access in inward rectifier K+ channels. Neuron 37, 953–962 (2003).

    PubMed  Google Scholar 

  44. Enkvetchakul, D., Loussouarn, G., Makhina, E., Shyng, S. L. & Nichols, C. G. The kinetic and physical basis of KATP channel gating: toward a unified molecular understanding. Biophys. J. 78, 2334–2348 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Markworth, E., Schwanstecher, C. & Schwanstecher, M. ATP4− mediates closure of pancreatic β-cell ATP-sensitive potassium channels by interaction with 1 of 4 identical sites. Diabetes 49, 1413–1418 (2000).

    CAS  PubMed  Google Scholar 

  46. Proks, P., Gribble, F. M., Adhikari, R., Tucker, S. J. & Ashcroft, F. M. Involvement of the N-terminus of Kir6.2 in the inhibition of the KATP channel by ATP. J. Physiol. (Lond.) 514, 19–25 (1999).

    CAS  Google Scholar 

  47. Li, L., Wang, J. & Drain, P. The I182 region of Kir6.2 is closely associated with ligand binding in KATP channel inhibition by ATP. Biophys. J. 79, 841–852 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tucker, S. J., Gribble, F. M., Zhao, C., Trapp, S. & Ashcroft, F. M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387, 179–183 (1997).

    ADS  CAS  PubMed  Google Scholar 

  49. Shyng, S. L., Cukras, C. A., Harwood, J. & Nichols, C. G. Structural determinants of PIP2 regulation of inward rectifier KATP channels. J. Gen. Physiol. 116, 599–608 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Drain, P., Li, L. & Wang, J. KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc. Natl Acad. Sci. USA 95, 13953–13958 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. MacGregor, G. G. et al. Nucleotides and phospholipids compete for binding to the C terminus of KATP channels. Proc. Natl Acad. Sci. USA 99, 2726–2731 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nichols, C. G. et al. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272, 1785–1787 (1996).

    ADS  CAS  PubMed  Google Scholar 

  53. Lammens, A., Schele, A. & Hopfner, K. P. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. 14, 1778–1782 (2004).

    CAS  PubMed  Google Scholar 

  54. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsuo, M., Tanabe, K., Kioka, N., Amachi, T. & Ueda, K. Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B. J. Biol. Chem. 275, 28757–28763 (2000).

    CAS  PubMed  Google Scholar 

  56. Ueda, K., Komine, J., Matsuo, M., Seino, S. & Amachi, T. Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide. Proc. Natl Acad. Sci. USA 96, 1268–1272 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zingman, L. V. et al. Signaling in channel/enzyme multimers: ATPase transitions in SUR module gate ATP-sensitive K+ conductance. Neuron 31, 233–245 (2001).

    CAS  PubMed  Google Scholar 

  58. Bienengraeber, M. et al. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J. 14, 1943–1952 (2000).

    CAS  PubMed  Google Scholar 

  59. Masia, R., Enkvetchakul, D. & Nichols, C. Differential nucleotide regulation of KATP channels by SUR1 and SUR2A. J. Mol. Cell. Cardiol. 39, 491–501 (2005).

    CAS  PubMed  Google Scholar 

  60. Shyng, S., Ferrigni, T. & Nichols, C. G. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J. Gen. Physiol. 110, 643–654 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gribble, F. M., Tucker, S. J. & Ashcroft, F. M. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J. 16, 1145–1152 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zingman, L. V. et al. Tandem function of nucleotide binding domains confers competence to sulfonylurea receptor in gating ATP-sensitive K+ channels. J. Biol. Chem. 277, 14206–14210 (2002).

    CAS  PubMed  Google Scholar 

  63. Seino, S. & Miki, T. Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice. J. Physiol. (Lond.) 554, 295–300 (2004).

    CAS  Google Scholar 

  64. Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel- deficient mice. Proc. Natl Acad. Sci. USA 95, 10402–10406 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seghers, V., Nakazaki, M., DeMayo, F., Aguilar-Bryan, L. & Bryan, J. Sur1 knockout mice. A model for KATP channel-independent regulation of insulin secretion. J. Biol. Chem. 275, 9270–9277 (2000).

    CAS  PubMed  Google Scholar 

  66. Shiota, C. et al. Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J. Biol. Chem. 277, 37176–37183 (2002).

    CAS  PubMed  Google Scholar 

  67. Chutkow, W. A. et al. Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc. Natl Acad. Sci. USA 98, 11760–11764 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Suzuki, M. et al. Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice. Circ. Res. 88, 570–577 (2001).

    CAS  PubMed  Google Scholar 

  69. Miki, T. et al. Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1. Nature Med. 8, 466–472 (2002).

    CAS  PubMed  Google Scholar 

  70. Chutkow, W. A. et al. Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels. J. Clin. Invest. 110, 203–208 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Koster, J. C., Permutt, A. & Nichols, C. G. Diabetes and insulin secretion: the ATP-sensitive K+ channel (KATP) connection. Diabetes 54, 3065–3072 (2005).

    CAS  PubMed  Google Scholar 

  72. Hattersley, A. T. & Ashcroft, F. M. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes 54, 2503–2513 (2005).

    CAS  PubMed  Google Scholar 

  73. Sharma, N., Crane, A., Gonzalez, G., Bryan, J. & Aguilar-Bryan, L. Familial hyperinsulinism and pancreatic β-cell ATP-sensitive potassium channels. Kidney Int. 57, 803–808 (2000).

    CAS  PubMed  Google Scholar 

  74. Nestorowicz, A. et al. Genetic heterogeneity in familial hyperinsulinism. Hum. Mol. Genet. 7, 1119–1128 (1998).

    CAS  PubMed  Google Scholar 

  75. Tornovsky, S. et al. Hyperinsulinism of infancy: novel ABCC8 and KCNJ11 mutations and evidence for additional locus heterogeneity. J. Clin. Endocrinol. Metab. 89, 6224–6234 (2004).

    CAS  PubMed  Google Scholar 

  76. Shyng, S. L. et al. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47, 1145–1151 (1998).

    CAS  PubMed  Google Scholar 

  77. Cartier, E., Conti, L. R., Vandenberg, C. A. & Shyng, S.-L. Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc. Natl Acad. Sci. USA 98, 2882–2887 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Partridge, C. J., Beech, D. J. & Sivaprasadarao, A. Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J. Biol. Chem. 276, 35947–35952 (2001).

    CAS  PubMed  Google Scholar 

  79. Yan, F. et al. Sulfonylureas correct trafficking defects of ATP-sensitive potassium channels caused by mutations in the sulfonylurea receptor. J. Biol. Chem. 279, 11096–11105 (2004).

    CAS  PubMed  Google Scholar 

  80. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    CAS  PubMed  Google Scholar 

  81. Proks, P. et al. Molecular basis of Kir6.2 mutations associated with neonatal diabetes plus neurological features. Proc. Natl Acad. Sci. USA 101, 17539–17544 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Koster, J. C., Remedi, M. S., Dao, C. & Nichols, C. G. ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy. Diabetes 54, 2645–2654 (2005).

    CAS  PubMed  Google Scholar 

  83. Tucker, S. J. et al. Molecular determinants of KATP channel inhibition by ATP. EMBO J. 17, 3290–3296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Schwanstecher, C., Meyer, U. & Schwanstecher, M. KIR6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K+ channels. Diabetes 51, 875–879 (2002).

    CAS  PubMed  Google Scholar 

  85. Yorifuji, T. et al. The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 90, 3174–3178 (2005).

    CAS  PubMed  Google Scholar 

  86. Massa, O. et al. KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum. Mutat. 25, 22–27 (2005).

    CAS  PubMed  Google Scholar 

  87. Sagen, J. V. et al. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53, 2713–2718 (2004).

    CAS  PubMed  Google Scholar 

  88. Zung, A., Glaser, B., Nimri, R. & Zadik, Z. Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J. Clin. Endocrinol. Metab. 89, 5504–5507 (2004).

    CAS  PubMed  Google Scholar 

  89. Crawford, R. M. et al. M-LDH serves as a sarcolemmal KATP channel subunit essential for cell protection against ischemia. EMBO J. 21, 3936–3948 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chowdhury, P. D. et al. The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the KATP channel macromolecular complex and regulate its function. J. Biol. Chem. 280, 38464–38470 (2005).

    Google Scholar 

  91. Cartier, E. A., Shen, S. & Shyng, S. L. Modulation of the trafficking efficiency and functional properties of ATP-sensitive potassium channels through a single amino acid in the sulfonylurea receptor. J. Biol. Chem. 278, 7081–7090 (2003).

    CAS  PubMed  Google Scholar 

  92. Haider, S., Grottesi, A., Hall, B. A., Ashcroft, F. M. & Sansom, M. S. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating. Biophys. J. 88, 3310–3320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to R. Masia, B. Koster, D. Enkvetchakul, H. Kurata and T. Flagg for providing suggestions on the text, and to R. Masia, D. Enkvetchakul, F. Ashcroft and M. Sansom for providing molecular models of SUR1 NBFs and Kir6.2.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, C. KATP channels as molecular sensors of cellular metabolism. Nature 440, 470–476 (2006). https://doi.org/10.1038/nature04711

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04711

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing