Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From molecule to malady

Abstract

Ion channels are membrane proteins, found in virtually all cells, that are of crucial physiological importance. In the past decade, an explosion in the number of crystal structures of ion channels has led to a marked increase in our understanding of how ion channels open and close, and select between permeant ions. There has been a parallel advance in research on channelopathies (diseases resulting from impaired channel function), and mutations in over 60 ion-channel genes are now known to cause human disease. Characterization of their functional consequences has afforded unprecedented and unexpected insights into ion-channel mechanisms and physiological roles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular nanoswitches.
Figure 2: Ion-channel classes.
Figure 3: Skeletal muscle channelopathies.

Similar content being viewed by others

References

  1. Ashcroft, F. M. Ion Channels and Disease (Academic Press, New York, 2000).

    Google Scholar 

  2. Ulbricht, W. Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85, 1271–1301 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Johnston, G. A. GABA(A) receptor channel pharmacology. Curr. Pharm. Des. 11, 1867–1868 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, W. B. & Sansom, M. S. Viral ion channels: structure and function. Biochim. Biophys. Acta 1561, 27–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kuo, A et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Magleby, K. L. Gating mechanism of BK (Slo1) channels: so near, yet so far. J. Gen. Physiol. 121, 81–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matulef, K. & Zagotta, W. N. Cyclic nucleotide-gated ion channels. Annu. Rev. Cell Dev. Biol. 19, 23–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Tasneem, A., Iyer, L. M., Jakobsson, E. & Aravind, L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol. 6, R4 (2005).

    Article  PubMed  Google Scholar 

  12. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 346, 967–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hille, B. Ionic Channels of Excitable Membranes 3rd edn (Sinauer, Massachusetts, 2001).

    Google Scholar 

  15. Unwin, P. N. & Ennis, P. D. Two configurations of a channel-forming membrane protein. Nature 307, 609–613 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wei, C. J., Xu, X. & Lo, C. W. Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol. 20, 811–838 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F. & Tsien, R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–161 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Heinemann, S. H., Terlau, H., Stuhmer, W., Imoto, K. & Numa, S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ramsey, I. S., Delling, M. & Clapham, D. E. An Introduction to TRP Channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Webster, S. M., Del Camino, D., Dekker, J. P. & Yellen, G. Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges. Nature 428, 864–868 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kukuljan, M., Labarca, P. & Latorre, R. Molecular determinants of ion conduction and inactivation in K+channels. Am. J. Physiol. 268, C535–C556 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Amiri, S., Tai, K., Beckstein, O., Biggin, P. C. & Sansom, M. S. P. The α7 nicotinic acetylcholine receptor: molecular modelling electrostatics, and energetics. Mol. Membr. Biol. 22, 151–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Proks, P., Capener, C., Jones, P. & Ashcroft, F. M. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markworth, E., Schwanstecher, C. & Schwanstecher, M. ATP4– mediates closure of pancreatic beta-cell ATP-sensitive potassium channels by interaction with 1 of 4 identical sites. Diabetes 49, 1413–1418 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Antcliff, J. F., Haider, S., Proks, P., Sansom, M. S. & Ashcroft, F. M. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J. 24, 229–239 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pegan, S. et al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nature Neurosci. 8, 279–287 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Richards, M. W., Butcher, A. J. & Dolphin, A. C. Ca2+ channel beta-subunits: structural insights AID our understanding. Trends Pharmacol Sci. 25, 626–632 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Zerangue, N., Schwappach, B., Jan, Y. N. & Jan, L. Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Mikhailov, M. V. et al. 3D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. EMBO J. 24, 4166–4175 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cai, S. Q., Hernandez, L., Wang, Y., Park, K. H. & Sesti, F. MPS-1 is a K+ channel beta-subunit and a serine/threonine kinase. Nature Neurosci. 8, 1503–1509 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Ashcroft, F. M. ATP-sensitive Potassium Channelopathies: focus on insulin secretion. J. Clin. Invest. 115, 2047–2058 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meisler, M. H. & Kearney, J. A. Sodium channel mutations in epilepsy and other neurological disorders. J. Clin. Invest. 115, 2010–2017 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheppard, D. N. et al. Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties. Nature 362, 160–164 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Proks, P. et al. Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc. Natl Acad. Sci. USA 101, 17539–17544 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ashcroft, F. M. & Rorsman, P. Type-2 diabetes mellitus: not quite exciting enough? Hum. Mol. Genet. 13, R21–R31 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Jurkat-Rott, K. & Lehmann-Horn, F. Muscle channelopathies and critical points in functional and genetic studies. J. Clin. Invest. 115, 2000–2009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci. 1, 21–30 (2000).

    Article  CAS  Google Scholar 

  41. Du, W. et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nature Genet. 37, 733–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Rossier, B. C., Pradervand, S., Schild, L. & Hummler, E. Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu. Rev. Physiol. 64, 877–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Jentsch, T. J., Maritzen, T. & Zdebik, A. A. Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J. Clin. Invest. 115, 2039–2046 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Simon, D. B. et al. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nature Genet. 14, 152–156 (1996).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  45. Pardo, L. A., Contreras-Jurado, C., Zientkowska, M., Alves, F. & Stuhmer, W. Role of voltage-gated potassium channels in cancer. J. Membr. Biol. 205, 115–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Priori, S. G. & Napolitano, C. Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J. Clin. Invest. 115, 2033–2038 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lang, B. & Vincent, A. Autoantibodies to ion channels at the neuromuscular junction. Autoimmun. Rev. 2, 94–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Newsom-Davis, J. et al. Autoimmune disorders of neuronal potassium channels. Ann. NY Acad. Sci. 998, 202–210 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Sesti, F. et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl Acad. Sci. USA 97, 10613–10618 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ambrosius, W. T. et al. Genetic variants in the epithelial sodium channel in relation to aldosterone and potassium excretion and risk for hypertension. Hypertension 34, 631–637 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Ashcroft, F. M., Harrison, D. E. & Ashcroft, S. J. H. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312, 446–448 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank C. Miller and M. Sansom for comments and criticisms on earlier versions of this review. Work in my laboratory is supported by grants from the Royal Society, the Wellcome Trust and the European Union (BioSim and EuroDia).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashcroft, F. From molecule to malady. Nature 440, 440–447 (2006). https://doi.org/10.1038/nature04707

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04707

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing