Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation

Abstract

The sensing of reactive oxygen species is essential for cellular responses to oxidative stress1. The sensing of peroxides is typically mediated by redox-active cysteines in sensors such as the bacterial OxyR, OhrR, and Hsp33 proteins2,3. Bacillus subtilis PerR is the prototype for a widespread family of metal-dependent peroxide sensors that regulate inducible peroxide-defence genes4. Here we show that PerR senses peroxides by metal-catalysed oxidation. PerR contains two metal-binding sites: a structural Zn2+ site and a regulatory divalent metal ion site that preferentially binds Fe2+ or Mn2+ (ref. 5). Protein oxidation, catalysed by a bound ferrous ion, leads to the rapid and direct incorporation of one oxygen atom into histidine 37 (H37) or H91, two of the residues that coordinate the bound Fe2+. This mechanism accounts for the ability of PerR to sense low levels of hydrogen peroxide in vivo. The reduction of hydrogen peroxide by metal ions to generate highly reactive hydroxyl radicals underlies the genotoxic effects of peroxides1, and has been shown to contribute to enzyme inactivation, but has not previously been shown to provide a regulatory mechanism for peroxide sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PerR contains two metal-binding sites.
Figure 2: Metal-catalysed oxidation of PerR.
Figure 3: Oxidative inactivation of PerR:Zn,Fe and PerR:Zn,Mn.
Figure 4: Oxidation of PerR is localized to H37 and H91.

Similar content being viewed by others

References

  1. Imlay, J. A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Kiley, P. J. & Storz, G. Exploiting thiol modifications. PLoS Biol. 2, e400 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Toledano, M. B., Delaunay, A., Monceau, L. & Tacnet, F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem. Sci. 29, 351–357 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Mongkolsuk, S. & Helmann, J. D. Regulation of inducible peroxide stress responses. Mol. Microbiol. 45, 9–15 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Herbig, A. F. & Helmann, J. D. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41, 849–859 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Helmann, J. D. et al. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J. Bacteriol. 185, 243–253 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuangthong, M., Herbig, A. F., Bsat, N. & Helmann, J. D. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184, 3276–3286 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barford, D. The role of cysteine residues as redox-sensitive regulatory switches. Curr. Opin. Struct. Biol. 14, 679–686 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Hahn, J. S., Oh, S. Y., Chater, K. F., Cho, Y. H. & Roe, J. H. H2O2-sensitive Fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. J. Biol. Chem. 275, 38254–38260 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Ortiz de Orue Lucana, D., Troller, M. & Schrempf, H. Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Mol. Genet. Genomics 268, 618–627 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Pohl, E. et al. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47, 903–915 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Chen, L., Keramati, L. & Helmann, J. D. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl Acad. Sci. USA 92, 8190–8194 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, C. et al. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11, 1179–1185 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Uchida, K. & Kawakishi, S. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem. 269, 2405–2410 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. Uchida, K. & Kawakishi, S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 332, 208–210 (1993)

    Article  CAS  PubMed  Google Scholar 

  16. Schoneich, C. Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J. Pharm. Biomed. Anal. 21, 1093–1097 (2000)

    Article  CAS  PubMed  Google Scholar 

  17. Jewett, S. L., Rocklin, A. M., Ghanevati, M., Abel, J. M. & Marach, J. A. A new look at a time-worn system: oxidation of CuZn-SOD by H2O2 . Free Radic. Biol. Med. 26, 905–918 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. He, C. et al. A methylation-dependent electrostatic switch controls DNA repair and transcriptional activation by E. coli Ada. Mol. Cell 20, 117–129 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Luo, Y. et al. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106, 585–594 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Nystrom, T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J. 24, 1311–1317 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wright, A. F. et al. Lifespan and mitochondrial control of neurodegeneration. Nature Genet. 36, 1153–1158 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Schoneich, C. & Williams, T. D. Cu(II)-catalyzed oxidation of beta-amyloid peptide targets His13 and His14 over His6: Detection of 2-Oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15, 717–722 (2002)

    Article  PubMed  Google Scholar 

  24. Berlett, B. S., Levine, R. L., Chock, P. B., Chevion, M. & Stadtman, E. R. Antioxidant activity of Ferrozine-iron-amino acid complexes. Proc. Natl Acad. Sci. USA 98, 451–456 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaltwasser, M., Wiegert, T. & Schumann, W. Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Appl. Environ. Microbiol. 68, 2624–2628 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guérout-Fleury, A.-M., Frandsen, N. & Stragier, P. Plasmids for ectopic integration in Bacillus subtilis. Gene 180, 57–61 (1996)

    Article  PubMed  Google Scholar 

  27. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Fuangthong and S. Soonsanga for their initial analyses of functionally altered perR variants, E. Madsen for help with the anaerobic experiments, S. Zhang and R. Sherwood for assistance with mass spectrometry, and G. Storz, P. Kiley, J. Imlay, and C. M. Moore for comments. This work was supported by grants from the NSF and NIH. Author Contributions: J.-W.L. performed all experimental work, J.-W.L. and J.D.H. analysed results and co-wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Helmann.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1–8 and their legends. (PDF 1311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Helmann, J. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363–367 (2006). https://doi.org/10.1038/nature04537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing