Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic-field-induced shape recovery by reverse phase transformation

Abstract

Large magnetic-field-induced strains1 have been observed in Heusler alloys with a body-centred cubic ordered structure and have been explained by the rearrangement of martensite structural variants due to an external magnetic field1,2,3. These materials have attracted considerable attention as potential magnetic actuator materials. Here we report the magnetic-field-induced shape recovery of a compressively deformed NiCoMnIn alloy. Stresses of over 100 MPa are generated in the material on the application of a magnetic field of 70 kOe; such stress levels are approximately 50 times larger than that generated in a previous ferromagnetic shape-memory alloy4. We observed 3 per cent deformation and almost full recovery of the original shape of the alloy. We attribute this deformation behaviour to a reverse transformation from the antiferromagnetic (or paramagnetic) martensitic to the ferromagnetic parent phase at 298 K in the Ni45Co5Mn36.7In13.3 single crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermomagnetization curves of the Ni 45 Co 5 Mn 36.6 In 13.4 alloy measured in several magnetic fields by the sample extraction method.
Figure 2: Magnetization versus magnetic field curves for the Ni 45 Co 5 Mn 36.6 In 13.4 alloy between 200 K and 320 K.
Figure 3: Compressive stress-strain curves for the three single-crystalline alloys at T t = 298 K.
Figure 4: Recovery strain at 298 K induced by a magnetic field for Ni45Co5Mn36.7In13.3.

Similar content being viewed by others

References

  1. Ullakko, K., Huang, J. K., Kanter, C., Kokorin, V. V. & O'Handley, R. C. Large magnetic-field-induced strains in Ni2MnGa single crystal. Appl. Phys. Lett. 69, 1966–1968 (1996)

    Article  ADS  CAS  Google Scholar 

  2. James, R. D. & Wuttig, M. Magnetostriction of martensite. Phil. Mag. A 77, 1273–1299 (1998)

    Article  ADS  CAS  Google Scholar 

  3. O'Handley, R. C. Model for strain and magnetization in magnetic shape memory alloys. J. Appl. Phys. 83, 3263–3270 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Murray, S. J., Marioni, M., Allen, S. M., O'Handley, R. C. & Lograsso, T. A. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 77, 886–888 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Sozinov, A., Likhachev, A. A., Lanska, N. & Ullakko, K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Sakamoto, T., Fukuda, T., Kakeshita, T., Takeuchi, T. & Kishio, K. Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 93, 8647–8649 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Wada, T. et al. Structural change and straining in Fe-Pd polycrystals by magnetic field. Mater. Sci. Eng. A 361, 75–82 (2003)

    Article  Google Scholar 

  8. Kakeshita, T. et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502–1504 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Wuttig, M., Li, J. & Craciunescu, C. A new ferromagnetic shape memory alloy system. Scr. Mater. 44, 2393–2397 (2001)

    Article  CAS  Google Scholar 

  10. Oikawa, K. et al. Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems. Mater. Trans. 42, 2472–2475 (2001)

    Article  CAS  Google Scholar 

  11. Oikawa, K. et al. Promising ferromagnetic Ni-Co-Al shape memory alloy system. Appl. Phys. Lett. 79, 3290–3292 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Morito, H. et al. Magnetocrystalline anisotropy in single-crystal Co-Ni-Al ferromagnetic shape-memory alloy. Appl. Phys. Lett. 81, 1657–1659 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Oikawa, K. et al. Magnetic and martensitic phase transitions in ferromagnetic Ni-Ga-Fe shape memory alloys. Appl. Phys. Lett. 81, 5201–5203 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Oikawa, K. et al. K. Magnetic and martensitic phase transformations in a Ni54Ga27Fe19 alloy. Mater. Trans. 43, 2360–2362 (2002)

    Article  CAS  Google Scholar 

  15. Cherechukin, A. et al. Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni–Mn–Fe–Ga alloy. Phys. Lett. A 291, 175–183 (2000)

    Article  ADS  Google Scholar 

  16. Sutou, Y., Kainuma, R., Ishida, K. & Taya, M. Martensitic transformation behaviour under magnetic field in Co-Ni-Al ferromagnetic shape memory alloys. Proc. SPIE 5053, 159–168 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Sutou, Y. et al. Magnetic and martensitic transformations of NiMnX(X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358–4360 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Kainuma, R., Gejima, F., Sutou, Y., Ohnuma, I. & Ishida, K. Ordering, martensitic and ferromagnetic transformations in Ni-Al-Mn Heusler shape memory alloys. Mater. Trans. JIM 41, 943–949 (2000)

    Article  CAS  Google Scholar 

  19. Fallot, M. & Hocart, R. Sur l'apparition du ferromagnétisme par élévation de température dans des alliages de fer et de rhodium. Rev. Sci. 77, 498–499 (1939)

    Google Scholar 

  20. Kouvel, J. S. & Hartelius, C. C. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 33, 1343–1344 (1962)

    Article  ADS  CAS  Google Scholar 

  21. Pecharsky, V. K. & Gscheidner, K. A. Jr Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Wada, H. & Tanabe, Y. Giant magnetocaloric effect of MnAs1-xSbx . Appl. Phys. Lett. 79, 3302–3304 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Fujita, A., Fujieda, S., Hasegawa, S. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003)

    Article  ADS  Google Scholar 

  24. Wollants, P., Debonte, M. & Roos, J. R. Thermodynamic analysis of the stress-induced martensitic-transformation in a single-crystal. Z. Metall. 70, 113–117 (1979)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST) and ‘Collaborative Research’ in Center for Interdisciplinary Research, Tohoku University. One of the authors (R.K.) acknowledges support from the Kurata Memorial Hitachi Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kainuma.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kainuma, R., Imano, Y., Ito, W. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006). https://doi.org/10.1038/nature04493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing