Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Initial corrosion observed on the atomic scale

Abstract

Corrosion destroys more than three per cent of the world's GDP1. Recently, the electrochemical decomposition of metal alloys has been more productively harnessed to produce porous materials with diverse technological potential2,3. High-resolution insight into structure formation during electrocorrosion is a prerequisite for an atomistic understanding and control of such electrochemical surface processes. Here we report atomic-scale observations of the initial stages of corrosion of a Cu3Au(111) single crystal alloy within a sulphuric acid solution. We monitor, by in situ X-ray diffraction with picometre-scale resolution, the structure and chemical composition of the electrolyte/alloy interface as the material decomposes. We reveal the microscopic structural changes associated with a general passivation phenomenon of which the origin has been hitherto unclear. We observe the formation of a gold-enriched single-crystal layer that is two to three monolayers thick, and has an unexpected inverted (CBA-) stacking sequence. At higher potentials, we find that this protective passivation layer dewets and pure gold islands are formed; such structures form the templates for the growth of nanoporous metals2. Our experiments are carried out on a model single-crystal system. However, the insights should equally apply within a crystalline grain of an associated polycrystalline electrode fabricated from many other alloys exhibiting a large difference in the standard potential of their constituents4, such as stainless steel (see ref. 5 for example) or alloys used for marine applications, such as CuZn or CuAl.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Voltammogram and passivation layer formation.
Figure 2: In-situ structural characterization of the passivation layer.
Figure 3: Transformation of the passivation layer into Au islands.
Figure 4: Integrated anomalous in-plane diffraction intensities of the ultrathin passivation layer, and Au islands.

Similar content being viewed by others

References

  1. Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P. & Payer, J. H. Corrosion Cost and Preventive Strategies in the United States. Report FHWA-RD-01-156 (Report by CC Technologies Laboratories, Inc. to Federal Highway Administration (FHWA), Office of Infrastructure Research and Development, McLean, 2001); http://www.corrosioncost.com/pdf/main.pdf.

  2. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, M. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Weissmüller, J. et al. Charge-induced reversible strain in a metal. Science 300, 312–315 (2003)

    Article  ADS  Google Scholar 

  4. Al-Kharafi, F. M., Ateya, B. G. & Allah, R. M. Selective solution of brass in salt water. Appl. Electrochem. 34, 47–53 (2004)

    Article  CAS  Google Scholar 

  5. Williams, D. E., Newman, R. C., Song, Q. & Kelly, R. G. Passivity breakdown and pitting corrosion of binary alloys. Nature 350, 216–219 (1991)

    Article  ADS  CAS  Google Scholar 

  6. Gerischer, H. in Korrosion Vol. 14 (ed. Heumann, T.) 59–64 (Chemie, Weinheim, 1962)

    Google Scholar 

  7. Pickering, H. W. Characteristic features of alloy polarization curves. Corr. Sci. 23, 1107–1120 (1983)

    Article  CAS  Google Scholar 

  8. Kaiser, H. & Eckstein, G. A. in Corrosion of Alloys—Encyclopedia of Electrochemistry (eds Stratmann, M. & Frankel, G. S.) Vol. 4, 156–186 (Wiley, Weinheim, 2003)

    Google Scholar 

  9. Oppenheim, I. C., Trevor, D. J., Chidsey, Ch. E. D., Trevor, P. L. & Sieradzki, K. In-situ scanning tunnelling microscopy of corrosion of silver-gold alloys. Science 254, 687–689 (1991)

    Article  ADS  CAS  Google Scholar 

  10. Chen, S. J. et al. Selective dissolution of copper from Au-rich Cu-Au alloys: an electrochemical study. Surf. Sci. 292, 289–297 (1993)

    Article  ADS  CAS  Google Scholar 

  11. Eckstein, G. A. In-situ Rastertunnelmikroskopische Untersuchungen zur selektiven Korrosion von niedrigindizierten Au 3 Cu(hkl) und Cu 3 Au(hkl) Legierungseinkristallen. Dissertation, Erlangen (2001).

  12. Stratmann, M. & Rohwerder, M. A pore view of corrosion. Nature 410, 420–423 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Moffat, T. P., Fan, F.-R. F. & Bard, A. J. Electrochemical and scanning tunneling microscopic study of dealloying of Cu3Au. J. Electrochem. Soc. 138, 3224–3235 (1991)

    Article  CAS  Google Scholar 

  14. Kabius, B., Kaiser, H. & Kaesche, H. in Surfaces Inhibition and Passivation (eds McCafferty, E. & Brodd, R. J.) 562–573 (The Electrochemical Society, Pennington, 1986)

    Google Scholar 

  15. Li, R. & Sieradzki, K. Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168–1171 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Pickering, H. W. & Swann, P. R. Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking. Corrosion 19, 373t–389t (1963)

    Article  CAS  Google Scholar 

  17. Forty, A. J. Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597–598 (1979)

    Article  ADS  CAS  Google Scholar 

  18. Forty, A. J. & Rowlands, G. A. Possible model for corrosion pitting and tunneling in noble metal alloys. Phil. Mag. A 43, 171–188 (1980)

    Article  ADS  Google Scholar 

  19. Pickering, H. W. Formation of new phases during anodic dissolution of Zn-rich Cu-Zn alloys. J. Electrochem. Soc. 117, 8–15 (1970)

    Article  CAS  Google Scholar 

  20. Robinson, I. K. & Tweet, D. J. Surface X-ray diffraction. Rep. Prog. Phys. 55, 599–651 (1992)

    Article  ADS  CAS  Google Scholar 

  21. Zoubov, N., Vanleugenhage, C. & Pourbaix, M. in Atlas d'Equilibres Electrochemique (ed. Pourbaix, M.) Ch. 14 (Gauthier Villars, Paris, 1963)

    Google Scholar 

  22. Erlebacher, J. An atomistic description of dealloying. J. Electrochem. Soc. 151, C614–C626 (2004)

    Article  CAS  Google Scholar 

  23. Stierle, A. et al. Dedicated Max-Planck beamline for the in-situ investigation of interfaces and thin films. Rev. Sci. Instrum. 75, 5302–5307 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Fleischmann, M. & Mao, B. W. In-situ X-ray diffraction studies of Pt electrode/solution interfaces. J. Electroanal. Chem. 229, 125–139 (1987)

    Article  CAS  Google Scholar 

  25. Zegenhagen, J. et al. X-ray diffraction study of a semiconductor/electrolyte interface: n-GaAs(001)/H2SO4/(:Cu). Surf. Sci. 352–254, 346–351 (1996)

    Article  ADS  Google Scholar 

  26. Vlieg, E. ROD: a program for surface X-ray crystallography. J. Appl. Crystallogr. 33, 401–405 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Krause, A. Reicho, S. Warren, B. C. C. Cowie, S. Thiess, O. Bunk and W. Drube for their help with the synchrotron measurements, and F. D'Anca and R. Felici for collaboration in developing the in-situ cell and installing the electrochemistry laboratory at INFM-OGG/ESRF. The Bundesministerium für Forschung und Bildung (BMBF) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. U. Renner.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, F., Stierle, A., Dosch, H. et al. Initial corrosion observed on the atomic scale. Nature 439, 707–710 (2006). https://doi.org/10.1038/nature04465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04465

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing