Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anti-planetward auroral electron beams at Saturn

Abstract

Strong discrete aurorae on Earth are excited by electrons, which are accelerated along magnetic field lines towards the planet1. Surprisingly, electrons accelerated in the opposite direction have been recently observed2,3,4,5,6. The mechanisms and significance of this anti-earthward acceleration are highly uncertain because only earthward acceleration was traditionally considered, and observations remain limited. It is also unclear whether upward acceleration of the electrons is a necessary part of the auroral process or simply a special feature of Earth's complex space environment. Here we report anti-planetward acceleration of electron beams in Saturn's magnetosphere along field lines that statistically map into regions of aurora. The energy spectrum of these beams is qualitatively similar to the ones observed at Earth, and the energy fluxes in the observed beams are comparable with the energies required to excite Saturn's aurora. These beams, along with the observations at Earth2,3,4,5,6 and the barely understood electron beams in Jupiter's magnetosphere7,8, demonstrate that anti-planetward acceleration is a universal feature of aurorae. The energy contained in the beams shows that upward acceleration is an essential part of the overall auroral process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Segments of Cassini's orbit in Saturn's magnetosphere show electron distributions that contain magnetic-field-aligned electron beams.
Figure 2: Electron beams in Saturn's magnetosphere.
Figure 3: Four electron beam energy spectra during Cassini's inbound orbit 0a in 2004.
Figure 4: Saturn's electron beams and aurorae.

Similar content being viewed by others

References

  1. Paschmann, G., Haaland, S. & Treumann, R. Auroral Plasma Physics (Kluwer Academic, Dordrecht, 2003)

    Book  Google Scholar 

  2. Klumpar, D. M. in Physics of Space Plasmas (1989) (eds Chang, T., Crew, G. B. & Jasperse, J. R.) 265–276 (SPI Conference Proceedings and Reprint Series No. 9, Scientific Publishers, Cambridge, Massachusetts, 1990)

    Google Scholar 

  3. Klumpar, D., Quinn, J. & Shelley, E. Counter-streaming electrons at the geomagnetic equator near 9 earth radii. Geophys. Res. Lett. 15, 1295–1298 (1988)

    Article  ADS  Google Scholar 

  4. Carlson, C. et al. FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops and ion heating. Geophys. Res. Lett. 25, 2017–2020 (1998)

    Article  ADS  Google Scholar 

  5. Ergun, R. et al. FAST satellite observations of electric field structures in the auroral zone. Geophys. Res. Lett. 25, 2025–2028 (1998)

    Article  ADS  Google Scholar 

  6. Marklund, M. et al. Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere. Nature 414, 724–727 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Frank, L. A. & Paterson, W. R. Galileo observations of electron beams and thermal ions in Jupiter's magnetosphere and their relationship to the auroras. J. Geophys. Res. 107, A1478, doi:10.1029/2001JA009150 (2002)

    ADS  Google Scholar 

  8. Tomás, A. et al. Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions. J. Geophys. Res. 109, A203, doi:10.1029/2004JA010405 (2004)

    Article  Google Scholar 

  9. Krimigis, S. et al. Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci. Rev. 114, 223–329 (2004)

    Article  ADS  Google Scholar 

  10. Krimigis, S. et al. Dynamics of Saturn's magnetosphere from MIMI during Cassini's orbital insertion. Science 307, 1270–1273 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Williams, D. J., Thorne, R. M. & Mauk, B. H. Energetic electron beams and trapped electrons at Io. J. Geophys. Res. 104, 14739–14753 (1999)

    Article  ADS  Google Scholar 

  12. Kurth, W. S. An Earth-like correspondence between Saturn's auroral features and radio emission. Nature 443, 722–725 (2005)

    Article  ADS  Google Scholar 

  13. Gurnett, D. A. et al. Radio and plasma wave observations at Saturn from Cassini's approach and first orbit. Science 307, 1255–1259 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Khurana, K. K., Arridge, C. S. & Dougherty, M. K. A versatile model of Saturn's magnetospheric field. Geophys. Res. Abstr. 7, 05970 (2005); http://www.cosis.net/abstracts/EGU05/05970/EGU05-J-05970.pdf

    Google Scholar 

  15. Gérard, J.-C. et al. Characteristics of Saturn's FUV aurora observed with the Space Telescope Imaging Spectrograph. J. Geophys. Res. 109(A9), A09207, doi:10.1029/2004JA010513 (2004)

    Article  ADS  Google Scholar 

  16. Clarke, J. T. et al. Morphological differences between Saturn's ultraviolet aurorae and those of Earth and Jupiter. Nature 433, 717–719 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Prangé, R. et al. An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78–81 (2004)

    Article  ADS  Google Scholar 

  18. Grodent, D., Gerard, J.-C., Cowley, S. W. T., Bunce, E. J. & Clarke, J. T. Variable morphology of Saturn's southern ultraviolet aurora. J. Geophys. Res. 110, A07215, doi:10.1029/2004JA010983 (2005)

    Article  ADS  Google Scholar 

  19. Crary, F. J. et al. Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae. Nature 433, 720–722 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Bhardwaj, A. & Gladstone, G. R. Auroral emissions of the giant planets. Rev. Geophys. 38, 295–353 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Cowley, S. T. W., Bunce, E. & Prangé, R. Saturn's polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22, 1379–1394 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Cowley, S. T. W. et al. Reconnection in a rotation-dominated magnetosphere and its relation to Saturn's auroral dynamics. J. Geophys. Res. 110, A00201, doi:10.1029/2004JA010796 (2005)

    Google Scholar 

  23. Clarke, J. T. et al. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415, 997–1000 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Feldstein, Y. I. & Galperin, Y. I. The auroral luminosity in the high-latitude upper atmosphere: its dynamics and relationship to the large-scale structure of the Earth's magnetosphere. Rev. Geophys. 23, 217–275 (1985)

    Article  ADS  Google Scholar 

  25. Mauk, B. H. & Meng, C.-I. in Auroral Physics (eds Meng, C. I., Rycroft, M. J. & Frank, L. A.) 223–239 (Cambridge Univ. Press, Cambridge, 1991)

    Google Scholar 

  26. Temerin, M. & Carlson, C. W. Current-voltage relationship in the downward auroral current region. Geophys. Res. Lett. 25, 2365–2368 (1998)

    Article  ADS  Google Scholar 

  27. Anderson, L. et al. Characteristics of parallel electric fields in the downward current region of the aurora. Phys. Plasmas 9, 3600–3609 (2002)

    Article  ADS  Google Scholar 

  28. Dougherty, M. K. et al. The Cassini Magnetic Field Investigation. Space Sci. Rev. 114, 331–383 (2004)

    Article  ADS  Google Scholar 

  29. Williams, D. J. & Mauk, B. H. Pitch angle diffusion at Jupiter's moon Ganymede. J. Geophys. Res. 102, 24283–24287 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Grodent for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saur.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saur, J., Mauk, B., Mitchell, D. et al. Anti-planetward auroral electron beams at Saturn. Nature 439, 699–702 (2006). https://doi.org/10.1038/nature04401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04401

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing