Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA primase acts as a molecular brake in DNA replication

Abstract

A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand1. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower2,3,4 than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization5. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis6,7,8. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The T7 replication fork.
Figure 2: Experimental design.
Figure 3: Single-molecule observation of T7 leading-strand synthesis.
Figure 4: Lagging-strand synthesis and loop formation.

Similar content being viewed by others

References

  1. Alberts, B. DNA replication and recombination. Nature 421, 431–435 (2003)

    Article  ADS  Google Scholar 

  2. Sheaff, R. J. & Kuchta, R. D. Mechanism of calf thymus DNA primase: slow initiation, rapid polymerization, and intelligent termination. Biochemistry 32, 3027–3037 (1993)

    Article  CAS  Google Scholar 

  3. Swart, J. R. & Griep, M. A. Primer synthesis kinetics by Escherichia coli primase on single-stranded DNA templates. Biochemistry 34, 16097–16106 (1995)

    Article  CAS  Google Scholar 

  4. Frick, D. N., Kumar, S. & Richardson, C. C. Interaction of ribonucleoside triphosphates with the gene 4 primase of bacteriophage T7. J. Biol. Chem. 274, 35899–35907 (1999)

    Article  CAS  Google Scholar 

  5. Stukenberg, P. T., Turner, J. & O'Donnell, M. An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 78, 877–887 (1994)

    Article  CAS  Google Scholar 

  6. Salinas, F. & Benkovic, S. J. Characterization of bacteriophage T4-coordinated leading- and lagging-strand synthesis on a minicircle substrate. Proc. Natl Acad. Sci. USA 97, 7196–7201 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Tougu, K. & Marians, K. J. The interaction between helicase and primase sets the replication fork clock. J. Biol. Chem. 271, 21398–21405 (1996)

    Article  CAS  Google Scholar 

  8. Lee, J., Chastain, P. D. II, Griffith, J. D. & Richardson, C. C. Lagging strand synthesis in coordinated DNA synthesis by bacteriophage T7 replication proteins. J. Mol. Biol. 316, 19–34 (2002)

    Article  CAS  Google Scholar 

  9. Benkovic, S. J., Valentine, A. M. & Salinas, F. Replisome-mediated DNA replication. Annu. Rev. Biochem. 70, 181–208 (2001)

    Article  CAS  Google Scholar 

  10. Tabor, S., Huber, H. E. & Richardson, C. C. Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262, 16212–16223 (1987)

    CAS  PubMed  Google Scholar 

  11. Guo, S., Tabor, S. & Richardson, C. C. The linker region between the helicase and primase domains of the bacteriophage T7 gene 4 protein is critical for hexamer formation. J. Biol. Chem. 274, 30303–30309 (1999)

    Article  CAS  Google Scholar 

  12. Frick, D. N., Baradaran, K. & Richardson, C. C. An N-terminal fragment of the gene 4 helicase/primase of bacteriophage T7 retains primase activity in the absence of helicase activity. Proc. Natl Acad. Sci. USA 95, 7957–7962 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Kusakabe, T., Baradaran, K., Lee, J. & Richardson, C. C. R. Roles of the helicase and primase domain of the gene 4 protein of bacteriophage T7 in accessing the primase recognition site. EMBO J. 17, 1542–1552 (1998)

    Article  CAS  Google Scholar 

  14. van Oijen, A. M. et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Bustamante, C., Smith, S. B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000)

    Article  CAS  Google Scholar 

  16. Wuite, G. J., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Maier, B., Bensimon, D. & Croquette, V. Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc. Natl Acad. Sci. USA 97, 12002–12007 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Ahnert, P., Picha, K. M. & Patel, S. S. A ring-opening mechanism for DNA binding in the central channel of the T7 helicase-primase protein. EMBO J. 19, 3418–3427 (2000)

    Article  CAS  Google Scholar 

  19. Hamdan, S. M. et al. A unique loop in T7 DNA polymerase mediates the binding of helicase-primase, DNA binding protein, and processivity factor. Proc. Natl Acad. Sci. USA 102, 5096–5101 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Kolodner, R. & Richardson, C. C. Gene 4 protein of bacteriophage T7. Characterization of the product synthesized by the T7 DNA polymerase and gene 4 protein in the absence of ribonucleoside 5′-triphosphates. J. Biol. Chem. 253, 574–584 (1978)

    CAS  PubMed  Google Scholar 

  21. Jeong, Y. J., Levin, M. K. & Patel, S. S. The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc. Natl Acad. Sci. USA 101, 7264–7269 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Stano, N. M. et al. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435, 370–373 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Frick, D. N. & Richardson, C. C. Interaction of bacteriophage T7 gene 4 primase with its template recognition site. J. Biol. Chem. 274, 35889–35898 (1999)

    Article  CAS  Google Scholar 

  24. Bernstein, J. A. & Richardson, C. C. A 7-kDa region of the bacteriophage T7 gene 4 protein is required for primase but not for helicase activity. Proc. Natl Acad. Sci. USA 85, 396–400 (1988)

    Article  ADS  CAS  Google Scholar 

  25. Bernstein, J. A. & Richardson, C. C. Purification of the 56-kDa component of the bacteriophage T7 primase/helicase and characterization of its nucleoside 5′-triphosphatase activity. J. Biol. Chem. 263, 14891–14899 (1988)

    CAS  PubMed  Google Scholar 

  26. He, Z.-G. & Richardson, C. C. Effect of single-stranded DNA-binding proteins on the helicase and primase activities of the bacteriophage T7 gene 4 protein. J. Biol. Chem. 279, 22190–22197 (2004)

    Article  CAS  Google Scholar 

  27. Yang, J., Xi, J., Zhuang, Z. & Benkovic, S. J. The oligomeric T4 primase is the functional form during replication. J. Biol. Chem. 280, 25416–25423 (2005)

    Article  CAS  Google Scholar 

  28. Mitkova, A. V., Khopde, S. M. & Biswas, S. B. Mechanism and stoichiometry of interaction of DnaG primase with DnaB helicase of Escherichia coli in RNA primer synthesis. J. Biol. Chem. 278, 52253–52261 (2005)

    Article  Google Scholar 

  29. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002)

    Article  CAS  Google Scholar 

  30. Notarnicola, S. M., Mulcahy, H. L., Lee, J. & Richardson, C. C. The acidic carboxyl terminus of the bacteriophage T7 gene 4 helicase/primase interacts with T7 DNA polymerase. J. Biol. Chem. 272, 18425–18433 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank T. Ellenberger, D. Crampton and P. Blainey for discussions and comments, and S. Buratowski for critically reading the manuscript. We are grateful to S.-J. Lee for providing the purified ZBD-less gp4 variant. We thank S. Moskowitz for preparation of the figures. This work was supported by grants from the NIH to C.C.R. and X.S.X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine M. van Oijen.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figures S1−S9, and additional references. (PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JB., Hite, R., Hamdan, S. et al. DNA primase acts as a molecular brake in DNA replication. Nature 439, 621–624 (2006). https://doi.org/10.1038/nature04317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04317

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing