Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamical fracture instabilities due to local hyperelasticity at crack tips

Abstract

As the speed of a crack propagating through a brittle material increases, a dynamical instability leads to an increased roughening of the fracture surface. Cracks moving at low speeds create atomically flat mirror-like surfaces; at higher speeds, rougher, less reflective (‘mist’) and finally very rough, irregularly faceted (‘hackle’) surfaces1,2,3,4,5 are formed. The behaviour is observed in many different brittle materials, but the underlying physical principles, though extensively debated, remain unresolved1,2,3,4. Most existing theories of fracture6,7,8,9,10,11,12 assume a linear elastic stress–strain law. However, the relation between stress and strain in real solids is strongly nonlinear due to large deformations near a moving crack tip, a phenomenon referred to as hyperelasticity13,14,15,16,17. Here we use massively parallel large-scale atomistic simulations—employing a simple atomistic material model that allows a systematic transition from linear elastic to strongly nonlinear behaviour—to show that hyperelasticity plays a governing role in the onset of the instability. We report a generalized model that describes the onset of instability as a competition between different mechanisms controlled by the local stress field6,7,8 and local energy flow13,14 near the crack tip. Our results indicate that such instabilities are intrinsic to dynamical fracture and they help to explain a range of controversial experimental1,2,3,4,5,18 and computational19,20,21,22,23,24,25,26 results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulation geometry with crystal orientation and interatomic force-separation laws.
Figure 2: Crack instability dynamics in the case of harmonic, linear elastic materials behaviour.
Figure 3: The critical instability speed as a function of the parameter rbreak for different choices of the smoothing parameter Ξ. Ξ = 50, Ξ = 150 and Ξ = 300.
Figure 4: The modified instability model and stable intersonic crack propagation in stiffening materials.

Similar content being viewed by others

References

  1. Fineberg, J., Gross, S. P., Marder, M. & Swinney, H. L. Instability in dynamic fracture. Phys. Rev. Lett. 67, 141–144 (1991)

    Article  Google Scholar 

  2. Marder, M. & Gross, S. Origin of crack-tip instabilities. J. Mech. Phys. Solids 43, 1–48 (1995)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  3. Ravi-Chandar, K. Dynamic fracture of nominally brittle materials. Int. J. Fract. 90, 83–102 (1998)

    Article  CAS  Google Scholar 

  4. Hauch, J. A., Holland, D., Marder, M. P. & Swinney, H. L. Dynamic fracture in single crystal silicon. Phys. Rev. Lett. 82, 3823–3826 (1999)

    Article  CAS  ADS  Google Scholar 

  5. Cramer, T., Wanner, A. & Gumbsch, P. Energy dissipation and path instabilities in dynamic fracture of silicon single crystals. Phys. Rev. Lett. 85, 788–791 (2000)

    Article  CAS  ADS  Google Scholar 

  6. Freund, L. B. Dynamic Fracture Mechanics 2nd edn (Cambridge Univ. Press, Cambridge, UK, 1998)

    MATH  Google Scholar 

  7. Broberg, B. Cracks and Fracture (Academic, San Diego, 1999)

    Google Scholar 

  8. Yoffe, E. H. The moving Griffith crack. Phil. Mag. 42, 739–750 (1951)

    Article  MathSciNet  Google Scholar 

  9. Slepyan, L. I. Models and Phenomena in Fracture Mechanics (Springer, Berlin, 2002)

    Book  Google Scholar 

  10. Eshelby, J. D. Fracture mechanics. Sci. Prog. 59, 161–179 (1971)

    Google Scholar 

  11. Freund, L. B. Crack propagation in an elastic solid subject to general loading. IV. Obliquely incident stress pulse. J. Mech. Phys. Solids 22, 137–146 (1974)

    Article  ADS  Google Scholar 

  12. Gao, H. Surface roughening and branching instabilities in dynamic fracture. J. Mech. Phys. Solids 41, 457–486 (1993)

    Article  ADS  Google Scholar 

  13. Gao, H. A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44, 1453–1474 (1996)

    Article  CAS  ADS  Google Scholar 

  14. Gao, H. Elastic eaves in a hyperelastic solid near its plane-strain equibiaxial cohesive limit. Phil. Mag. Lett. 76, 307–314 (1997)

    Article  CAS  ADS  Google Scholar 

  15. Guo, G. F., Yang, W. & Huang, Y. Supersonic crack growth in a solid of upturn stress-strain relation under anti-plane shear. J. Mech. Phys. Solids 51, 1971–1985 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  16. Buehler, M. J., Abraham, F. F. & Gao, H. Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003)

    Article  CAS  ADS  Google Scholar 

  17. Buehler, M. J., Abraham, F. F. & Gao, H. in Multiscale Modeling and Simulation (eds Attinger, S. & Koumoutsakos, P.) 143–156 (Springer Lecture Notes in Computational Science and Engineering, Springer, Berlin, 2004)

    Book  Google Scholar 

  18. Petersan, P. J., Deegan, R. D., Marder, M. & Swinney, H. L. Cracks in rubber under tension exceed the shear wave speed. Phys. Rev. Lett. 93, 015504 (2004)

    Article  ADS  Google Scholar 

  19. Abraham, F. F., Brodbeck, D., Rudge, W. E. & Xu, X. Instability of fracture—a computer-simulation investigation. Phys. Rev. Lett. 73, 272–275 (1994)

    Article  CAS  ADS  Google Scholar 

  20. Abraham, F. F., Brodbeck, D., Rudge, W. E. & Xu, X. A molecular-dynamics investigation of rapid fracture mechanics. J. Mech. Phys. Solids 45, 1595–1619 (1997)

    Article  CAS  ADS  Google Scholar 

  21. Gumbsch, P., Zhou, S. J. & Holian, B. L. Molecular-dynamics investigation of dynamic crack tip instability. Phys. Rev. B 55, 3445–3455 (1997)

    Article  CAS  ADS  Google Scholar 

  22. Fineberg, J. & Marder, M. Instability in dynamic fracture. Phys. Rep. Rev. Phys. Lett. 313(1–2), 2–108 (1999)

    MathSciNet  Google Scholar 

  23. Swadener, J. G., Baskes, M. I. & Nastasi, M. Molecular dynamics simulation of brittle fracture in silicon. Phys. Rev. Lett. 89, 085503 (2002)

    Article  CAS  ADS  Google Scholar 

  24. Rountree, C. L. et al. Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular-dynamics simulations. Annu. Rev. Mater. Res. 32, 377–400 (2002)

    Article  CAS  Google Scholar 

  25. Heizler, S. I., Kessler, D. A. & Levine, H. Mode I fracture in a nonlinear lattice with viscoelastic forces. Phys. Rev. E 66, 016126 (2002)

    Article  ADS  Google Scholar 

  26. Abraham, F. F. Unstable crack motion is predictable. J. Mech. Phys. Solids 53, 1071–1078 (2005)

    Article  ADS  Google Scholar 

  27. Boresi, A. & Chong, K. P. Elasticity in Engineering Mechanics 2nd edn (Wiley-Interscience, New York, 2000)

    MATH  Google Scholar 

  28. Allen, M. & Tildesley, D. Computer Simulation of Liquids (Oxford Univ. Press, New York, 1989)

    MATH  Google Scholar 

  29. van Duin, A. C. T. et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107, 3803–3811 (2003)

    Article  CAS  Google Scholar 

  30. Zhou, M. A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc. R. Soc. A 459, 2347–2392 (2003)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with F. F. Abraham on atomistic modelling of dynamic fracture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains background information on important questions in the field of dynamical fracture, introducing classical theories, major experimental results and a summary of the concept of hyperelasticity. (PDF 118 kb)

Supplementary Methods

This file contains an introduction into the molecular dynamics simulation procedure and details about the simulation geometry used for the studies reported in this Letter. (PDF 117 kb)

Supplementary Figure

The concept of dynamical crack tip instabilities and nonlinear elasticity. (PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buehler, M., Gao, H. Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439, 307–310 (2006). https://doi.org/10.1038/nature04408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04408

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing