Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread amphibian extinctions from epidemic disease driven by global warming

Abstract

As the Earth warms, many species are likely to disappear, often because of changing disease dynamics. Here we show that a recent mass extinction associated with pathogen outbreaks is tied to global warming. Seventeen years ago, in the mountains of Costa Rica, the Monteverde harlequin frog (Atelopus sp.) vanished along with the golden toad (Bufo periglenes). An estimated 67% of the 110 or so species of Atelopus, which are endemic to the American tropics, have met the same fate, and a pathogenic chytrid fungus (Batrachochytrium dendrobatidis) is implicated. Analysing the timing of losses in relation to changes in sea surface and air temperatures, we conclude with ‘very high confidence’ (> 99%, following the Intergovernmental Panel on Climate Change, IPCC) that large-scale warming is a key factor in the disappearances. We propose that temperatures at many highland localities are shifting towards the growth optimum of Batrachochytrium, thus encouraging outbreaks. With climate change promoting infectious disease and eroding biodiversity, the urgency of reducing greenhouse-gas concentrations is now undeniable.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Altitudinal patterns in the Atelopus extinctions.
Figure 2: AT and SST for the tropics and their relationship to climatic trends at Monteverde.
Figure 3: Signatures of warming in the Atelopus extinctions.
Figure 4: Daily minimum and maximum temperatures and the chytrid-thermal-optimum hypothesis.

Similar content being viewed by others

References

  1. Houghton, J. T. et al. (eds) Climate Change 2001, The Scientific Basis. Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, 2001)

  2. Santer, B. D. et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301, 479–483 (2003)

    Article  CAS  ADS  Google Scholar 

  3. Stott, P. A. Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett. 30, 1728–1731 (2003)

    Article  ADS  Google Scholar 

  4. Barnett, T. P. et al. Penetration of human-induced warming into the world's oceans. Science 309, 284–287 (2005)

    Article  CAS  ADS  Google Scholar 

  5. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003)

    Article  CAS  ADS  Google Scholar 

  6. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003)

    Article  CAS  ADS  Google Scholar 

  7. Root, T. L., MacMynowski, D. P., Mastrandrea, M. D. & Schneider, S. H. Human-modified temperatures induce species changes: Joint attribution. Proc. Natl Acad. Sci. USA 102, 7465–7469 (2005)

    Article  CAS  ADS  Google Scholar 

  8. Lovejoy, T. & Hannah, L. (eds) Climate Change and Biodiversity (Yale Univ. Press, New Haven, Connecticut, 2005)

  9. Epstein, P. R. Climate change and emerging infectious diseases. Microbes Infect. 3, 747–754 (2001)

    Article  CAS  Google Scholar 

  10. Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002)

    Article  CAS  ADS  Google Scholar 

  11. Rodó, X., Pascual, M., Fuchs, G. & Faruque, A. S. G. ENSO and cholera: A nonstationary link related to climate change? Proc. Natl Acad. Sci. USA 99, 12901–12906 (2002)

    Article  ADS  Google Scholar 

  12. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004)

    Article  CAS  ADS  Google Scholar 

  13. Stuart, S. M. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004)

    Article  CAS  ADS  Google Scholar 

  14. Alford, R. A. & Richards, S. J. Global amphibian declines: a problem in applied ecology. Annu. Rev. Ecol. Syst. 30, 133–165 (1999)

    Article  Google Scholar 

  15. Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001)

    Article  CAS  ADS  Google Scholar 

  16. Blaustein, A. R. & Kiesecker, J. M. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608 (2002)

    Article  Google Scholar 

  17. Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl Acad. Sci. USA 95, 9031–9036 (1998)

    Article  CAS  ADS  Google Scholar 

  18. Carey, C. & Alexander, M. A. Climate change and amphibian declines: Is there a link? Divers. Distrib. 9, 111–121 (2003)

    Article  Google Scholar 

  19. Daszak, P., Cunningham, A. A. & Hyatt, A. D. Infectious disease and amphibian population declines. Divers. Distrib. 9, 141–150 (2003)

    Article  Google Scholar 

  20. Lips, K. R., Green, D. E. & Pappendick, R. Chytridiomycosis in wild frogs from southern Costa Rica. J. Herpetol. 37, 215–218 (2003)

    Article  Google Scholar 

  21. Ron, S. R., Duellman, W. E., Coloma, L. A. & Bustamante, M. Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. J. Herpetol. 37, 116–126 (2003)

    Article  Google Scholar 

  22. Berger, L. et al. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82, 434–439 (2004)

    Article  CAS  Google Scholar 

  23. Burrowes, P. A., Joglar, R. L. & Green, D. E. Potential causes for amphibian declines in Puerto Rico. Herpetologica 60, 141–154 (2004)

    Article  Google Scholar 

  24. Piotrowski, J. S., Annis, S. L. & Longcore, J. E. Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96, 9–15 (2004)

    Article  Google Scholar 

  25. Retallick, R. W. R., McCallum, H. & Speare, R. Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol. 2, 1966–1971 (2004)

    Article  Google Scholar 

  26. La Marca, E. et al. Catastrophic population declines and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37, 190–201 (2005)

    Article  Google Scholar 

  27. Ron, S. R. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 37, 209–221 (2005)

    Article  Google Scholar 

  28. Merino-Viteri, A., Coloma, L. A. & Almendáriz, A. in Studies on the Andean Frogs of the Genera Telmatobius and Bratrachophrynus (eds Lavilla, E. O. & De la Riva, I.) 9–37 (Asociación Herpetológica Española, Valencia, 2005)

    Google Scholar 

  29. Pounds, J. A. & Crump, M. L. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv. Biol. 8, 72–85 (1994)

    Article  Google Scholar 

  30. Pounds, J. A., Fogden, M. P. L., Savage, J. M. & Gorman, G. C. Tests of null models for amphibian declines on a tropical mountain. Conserv. Biol. 11, 1307–1322 (1997)

    Article  Google Scholar 

  31. Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999)

    Article  CAS  ADS  Google Scholar 

  32. Pounds, J. A. in Monteverde: Ecology and Conservation of a Tropical Cloud Forest (eds Nadkarni, N. M. & Wheelwright, N. T.) 149–177 (Oxford Univ. Press, Oxford, 2000)

    Google Scholar 

  33. Pounds, J. A. Climate and amphibian declines. Nature 410, 639–640 (2001)

    Article  CAS  ADS  Google Scholar 

  34. Pounds, J. A. & Puschendorf, R. Ecology: Clouded futures. Nature 427, 107–109 (2004)

    Article  CAS  ADS  Google Scholar 

  35. Root, T. L. & Schneider, S. H. Ecology and climate: Research strategies and implications. Science 269, 334–341 (1995)

    Article  CAS  ADS  Google Scholar 

  36. Lawton, R. O., Nair, U. S., Pielke, R. A. Sr & Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584–587 (2001)

    CAS  PubMed  ADS  Google Scholar 

  37. Vuille, M., Bradley, R. S., Werner, M. & Keimig, F. 20th century climate change in the tropical Andes: observations and model results. Clim. Change 59, 75–99 (2003)

    Article  Google Scholar 

  38. Malhi, Y. & Wright, J. Spatial patterns and recent trends in the climate of tropical forest regions. Proc. R. Soc. Lond. B 359, 311–329 (2004)

    Google Scholar 

  39. Thompson, L. G. et al. Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim. Change 59, 137–155 (2003)

    Article  CAS  Google Scholar 

  40. Bush, M. B., Silman, M. R. & Urrego, D. H. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827–829 (2004)

    Article  CAS  ADS  Google Scholar 

  41. Still, C. J., Foster, P. N. & Schneider, S. H. Simulating the effects of climate change on tropical montane cloud forests. Nature 398, 608–610 (1999)

    Article  CAS  ADS  Google Scholar 

  42. Wentz, F. J. & Schabel, M. Precise climate monitoring using complementary satellite data sets. Nature 403, 414–416 (2000)

    Article  CAS  ADS  Google Scholar 

  43. Ross, R. J. & Elliott, W. P. Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Clim. 14, 1602–1612 (2001)

    Article  ADS  Google Scholar 

  44. Penner, J. E. Climate change: The cloud conundrum. Nature 432, 962–963 (2004)

    Article  CAS  ADS  Google Scholar 

  45. Dai, A., Trenberth, K. E. & Karl, T. R. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Clim. 12, 2451–2473 (1999)

    Article  ADS  Google Scholar 

  46. Gómez, I. E. & Fernández, W. Variación interanual de la temperatura en Costa Rica. Top. Meteor. Oceanogr. 3, 27–44 (1996)

    Google Scholar 

  47. Quintana-Gómez, R. A. Trends of maximum and minimum temperatures in northern South America. J. Clim. 12, 2104–2112 (1999)

    Article  ADS  Google Scholar 

  48. Cáceres, L., Mejia, R. & Otaneda, G. in Consecuencias Climáticas e Hidrológicas del Evento El Niño a Escala Regional y Local. Incidencia en America del Sur (eds Cadier, E., Gómez, G., Galarraga, R. & Fernández-Jáuregui, C.) 〈http://www.unesco.org.uy/phi/libros/enso/caceres.html〉 (UNESCO-PHI, 1998)

    Google Scholar 

  49. Sanchez-Azofeifa, G. A., Harriss, R. C. & Skole, D. L. Deforestation in Costa Rica: a quantitative analysis using remote sensing imagery. Biotropica 33, 378–384 (2001)

    Article  Google Scholar 

  50. Pielke, R. A. et al. A comprehensive meteorological modeling system—RAMS. Meteorol. Atmos. Phys 49, 69–91 (1992)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We thank T. P. Mitchell at JISAO and S. J. Worley at NCAR for help in obtaining climate data, R. A. Alford, F. Bolaños, J. P. Collins, R. O. Lawton, K. R. Lips, M. D. Mastrandrea, K. G. Murray, P. Ramírez and B. D. Santer for discussion, and the many contributors to the Atelopus database. S. H. Schneider, A. R. Blaustein and C. Parmesan commented on earlier drafts of the manuscript. The Declining Amphibian Populations Task Force and Conservation International's Critically Endangered Neotropical Species Fund provided partial funding to J.A.P. The Canada Foundation for Innovation and the Tinker Foundation helped produce the remote-sensing databases. The Research and Analysis Network for Neotropical Amphibians and the US National Science Foundation sponsored meetings that facilitated portions of the study. Author Contributions All authors after the first are listed alphabetically. J.A.P. conceived, designed and orchestrated the study, conducted most of the analyses (principally with J.A.C. and K.L.M.), formulated the chytrid-thermal-optimum hypothesis (with R.P.), and wrote the paper (with editing by J.A.C. and K.L.M.). M.R.B., L.A.C., M.P.L.F., E.L.M., A.M.-V. and S.R.R. provided key data and background information. E.L.M. compiled the Atelopus database (with B.E.Y.). P.N.F. conducted the climate simulations. G.A.S.-A. analysed the remote-sensing data. C.J.S. helped with the climate analyses and their interpretation. B.E.Y. obtained funding for meetings, provided logistics, and analysed GAA data for New World amphibians.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alan Pounds.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Notes, Supplementary Figures 1–5, Supplementary Tables 1 and 2, Supplementary References and Supplementary Appendix A. (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alan Pounds, J., Bustamante, M., Coloma, L. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006). https://doi.org/10.1038/nature04246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04246

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing