Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties

Abstract

Constraining the chemical, rheological and electromagnetic properties of the lowermost mantle (D″) is important to understand the formation and dynamics of the Earth's mantle and core. To explain the origin of the variety of characteristics of this layer observed with seismology, a number of theories have been proposed1, including core–mantle interaction, the presence of remnants of subducted material and that D″ is the site of a mineral phase transformation. This final possibility has been rejuvenated by recent evidence for a phase change in MgSiO3 perovskite (thought to be the most prevalent phase in the lower mantle2) at near core–mantle boundary temperature and pressure conditions3. Here we explore the efficacy of this ‘post-perovskite’ phase to explain the seismic properties of the lowermost mantle through coupled ab initio and seismic modelling of perovskite and post-perovskite polymorphs of MgSiO3, performed at lowermost-mantle temperatures and pressures. We show that a post-perovskite model can explain the topography and location of the D″ discontinuity, apparent differences in compressional- and shear-wave models1 and the observation of a deeper, weaker discontinuity4,5. Furthermore, our calculations show that the regional variations in lower-mantle shear-wave anisotropy are consistent with the proposed phase change in MgSiO3 perovskite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase boundary7 and calculation points for the perovskite and post-perovskite polymorphs of MgSiO3.
Figure 2: Seismic properties interpolated from ab initio calculations.
Figure 3: Comparison between real and synthetic S-wave seismograms predicted from the velocity/density profiles shown in Fig. 2.
Figure 4: Fast shear-wave orientation predicted for single-crystal perovskite and post-perovskite polymorphs of MgSiO 3 as a function of azimuth.

Similar content being viewed by others

References

  1. Wysession, M. E., et al. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) Vol. 28, 273–297 (American Geophysical Union, Washington DC, 1998)

    Book  Google Scholar 

  2. Ringwood, A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991)

    Article  ADS  CAS  Google Scholar 

  3. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3. Science 304, 855–857 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Thomas, C., Kendall, J.-M. & Lowman, J. Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth Planet. Sci. Lett. 225, 105–113 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Herlund, J. W., Thomas, C. & Tackley, P. J. A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle. Nature 434, 882–886 (2005)

    Article  ADS  Google Scholar 

  6. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  7. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer. Nature 430, 445–448 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Wentzcovitch, R. M., Karki, B. B., Karato, S. & Da Silva, C. R. S. High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications. Earth Planet. Sci. Lett. 164, 371–378 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Tsuchiya, T., Tsuchiya, J., Umemoto, K. & Wentzcovitch, R. M. Elasticity of post-perovskite MgSiO3 . Geophys. Res. Lett. 31, L14603 (2004)

    Article  ADS  Google Scholar 

  10. Stackhouse, S., Brodholt, J. P., Price, G. D., Wookey, J. & Kendall, J.-M. The effect of temperature on the acoustic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet. Sci. Lett. 230, 1–10 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Iitaka, T., Hirose, K., Kawamura, K. & Murakami, M. The elasticity of the MgSiO3 post-perovskite phase in the Earth's lowermost mantle. Nature 430, 442–445 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Tsuchiya, T., Tsuchiya, J., Umemoto, K. & Wentzcovitch, R. M. Phase transition in MgSiO3 perovskite in the Earth's lower mantle. Earth Planet. Sci. Lett. 224, 241–248 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. M. in Earth's Deep Interior: Mineral physics and Tomography From the Atomic to the Global Scale (eds Karato, S., Forte, A., Liebermann, R., Masters, G. & Stixrude, L.) Vol. 117, 201–213 (American Geophysical Union, Washington DC, 2000)

    Google Scholar 

  14. Trampert, J., Deschamps, F., Resovsky, J. & Yuen, D. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995)

    Article  ADS  Google Scholar 

  16. Karki, B. B., Wentzcovitch, R. M., Gironcoli, S. d. & Baroni, S. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 286, 1705–1707 (1999)

    Article  CAS  Google Scholar 

  17. Mueller, G. The reflectivity method; a tutorial. Z. Geophys. 58, 153–174 (1985)

    ADS  Google Scholar 

  18. Kendall, J.-M. in Earth's Deep Interior: Mineral physics and Tomography From the Atomic to the Global Scale (eds Karato, S., Forte, A., Liebermann, R., Masters, G. & Stixrude, L.) Vol. 117, 133–159 (American Geophysical Union, Washington DC, 2000)

    Book  Google Scholar 

  19. Lay, T., Williams, Q., Garnero, E. J., Kellogg, L. & Wysession, M. E. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) Vol. 28, 299–318 (American Geophysical Union, Washington DC, 1998)

    Book  Google Scholar 

  20. Panning, M. & Romanowicz, B. Inferences on flow at the base of Earth's mantle based on seismic anisotropy. Science 303, 351–353 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Montagner, J.-P. & Kennett, B. L. N. How to reconcile body-wave and normal-mode reference Earth models. Geophys. J. Int. 125, 229–248 (1996)

    Article  ADS  Google Scholar 

  22. Cordier, P., Ungar, T., Zsoldos, L. & Tichy, G. Dislocation creep in MgSiO3 . Nature 428, 837–840 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth's lower mantle. Nature 397, 53–56 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Garnero, E. J., Revenaugh, J., Lay, T. & Kellog, L. H. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) Vol. 28 319–334 (American Geophysical Union, Washington DC, 1998)

    Book  Google Scholar 

  25. Thomas, C., Weber, M., Wicks, C. W. & Scherbaum, F. Small scatterers in the lower mantle observed at German broadband arrays. J. Geophys. Res. 104, 15073–15088 (1999)

    Article  ADS  Google Scholar 

  26. Brana, L. & Helffrich, G. A scattering region near the core-mantle boundary under the North Atlantic. Geophys. J. Int. 158, 625–636 (2004)

    Article  ADS  Google Scholar 

  27. Tackley, P. J. in The Core-Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) Vol. 28, 231–253 (American Geophysical Union, Washington DC, 1998)

    Book  Google Scholar 

  28. Gubbins, D. Geomagnetic polarity reversals: a connection with secular variation and core-mantle interaction? Rev. Geophys. 32, 61–83 (1994)

    Article  ADS  Google Scholar 

  29. Jellinek, A. M. & Manga, M. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418, 760–763 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Kendall, J.-M. & Helffrich, G. SPICED: imaging the deep Earth. Astron. Geophys. 42, 26–29 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Dobson for discussions. This work was supported by the Deep Earth System NERC consortium grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Wookey.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Tables 1 and 2 and Supplementary Figures 1–4. (PDF 638 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wookey, J., Stackhouse, S., Kendall, JM. et al. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438, 1004–1007 (2005). https://doi.org/10.1038/nature04345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04345

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing