Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Retinal angiogenesis in development and disease

Abstract

The retina has long been regarded as ‘an approachable part of the brain’ for investigating neurosensory processes. Cell biologists are now capitalizing on the accessibility of the retina to investigate important aspects of developmental angiogenesis, including how it relates to neuronal and glial development, morphogenesis, oxygen sensing and progenitor cells. Pathological angiogenesis also occurs in the retina and is a major feature of leading blinding diseases, particularly diabetic retinopathy. The retina and its clinical disorders have a pivotal role in angiogenesis research and provide model systems in which to investigate neurovascular relationships and angiogenic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy and histological organization of the retina.
Figure 2: Clinical retinal diseases characterized by aberrant retinal angiogenesis.
Figure 3: Stereotypical timing and morphology of retinal vascularization.
Figure 4: Vascular endothelial growth factor in retinal development.
Figure 5: Glial–vascular relationships in retinal vascularization.
Figure 6: Bone-marrow-derived progenitor cells incorporate into perinatal and adult retinal vasculature.

Similar content being viewed by others

References

  1. Michaelson, I. C. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans. Ophthalmol. Soc. UK 68, 137–181 (1948).

    Google Scholar 

  2. Connolly, S. E., Hores, T. A., Smith, L. E. & D'Amore, P. A. Characterization of vascular development in the mouse retina. Microvasc. Res. 36, 275–290 (1988).

    Article  CAS  Google Scholar 

  3. Gariano, R. F. Cellular mechanisms in retinal vascular development. Prog. Retinal Eye Res. 22, 295–306 (2003).

    Article  CAS  Google Scholar 

  4. Flower, R. W., McLeod, D. S., Lutty, G. A, Goldberg, B. & Wajer, S. D. Postnatal retinal vascular development of the puppy. Invest. Ophthalmol. Vis. Sci. 26, 957–968 (1985).

    CAS  PubMed  Google Scholar 

  5. Chan-Ling, T. L., Halasz, P. & Stone, J. Development of retinal vasculature in the cat: processes and mechanisms. Curr. Eye Res. 9, 459–478 (1990).

    Article  CAS  Google Scholar 

  6. Ashton, N. Oxygen and the growth and development of retinal vessels. In vivo and in vitro studies. The XX Francis I. Proctor Lecture. Am. J. Ophthalmol. 62, 412–435 (1966).

    Article  CAS  Google Scholar 

  7. Wise, G. N. Factors influencing retinal new vessel formation. Am. J. Ophthalmol. 52, 637–650 (1961).

    Article  CAS  Google Scholar 

  8. Chan-Ling, T., Gock, B. & Stone, J. The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest. Ophthalmol. Vis. Sci. 36, 1201–1214 (1995).

    CAS  PubMed  Google Scholar 

  9. Phelps, D. L. Oxygen and developmental retinal capillary remodeling in the kitten. Invest. Ophthalmol. Vis. Sci. 31, 2194–2200 (1990).

    CAS  PubMed  Google Scholar 

  10. Stone, J. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738–4747 (1995).

    Article  CAS  Google Scholar 

  11. Ozaki, H. et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am. J. Pathol. 156, 697–707 (2000).

    Article  CAS  Google Scholar 

  12. Provis, J. M. et al. Development of the human retinal vasculature: cellular relations and VEGF expression. Exp. Eye Res. 65, 555–568 (1997).

    Article  CAS  Google Scholar 

  13. Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P. & Smith, L. E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl Acad. Sci. USA 92, 905–909 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002).

    Article  CAS  Google Scholar 

  15. Claxton, S. & Fruttiger, M. Role of arteries in oxygen induced vaso-obliteration. Exp. Eye Res. 77, 305–311 (2003).

    Article  CAS  Google Scholar 

  16. Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med. 1, 1024–1028 (1995).

    Article  CAS  Google Scholar 

  17. Ishida, S. et al. Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nature Med. 9, 781–788 (2003).

    Article  CAS  Google Scholar 

  18. Curatola, A. M., Moscatelli, D., Norris, A. & Hendricks-Munoz, K. Retinal blood vessels develop in response to local VEGF-A signals in the absence of blood flow. Exp. Eye Res. 81, 147–158 (2005).

    Article  CAS  Google Scholar 

  19. Shih, S. C., Ju, M., Liu, N. & Smith, L. E. Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J. Clin. Invest. 112, 50–57 (2003).

    Article  CAS  Google Scholar 

  20. Gariano, R. F., Hu, D. & Helms, J. Expression of angiogenesis-related genes during retinal development. Mech. Dev. Gene Exp. Patterns (in the press).

  21. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  Google Scholar 

  22. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  ADS  CAS  Google Scholar 

  23. Feeney, S. A. et al. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression. Invest. Ophthalmol. Vis. Sci. 44, 839–847 (2003).

    Article  Google Scholar 

  24. Sarlos, S. et al. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am. J. Pathol. 163, 879–887 (2003).

    Article  CAS  Google Scholar 

  25. Dawson, D. W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).

    Article  CAS  Google Scholar 

  26. Jaakkola, P. et al. Targeting of HIF-± to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Ohh, M. et al. Ubiquitination of hypoxia–inducible factor requires direct binding to the M-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423–427 (2000).

    Article  CAS  Google Scholar 

  28. Rankin, E. B. et al. Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel-Lindau disease-associated vascular tumors in mice. Mol. Cell Biol. 25, 3163–3172 (2005).

    Article  CAS  Google Scholar 

  29. Ma, W. et al. Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res. 63, 5320–5328 (2003).

    CAS  PubMed  Google Scholar 

  30. Ding, K., Scortegagna, M., Seaman, R., Birch, D. G. & Garcia, J. A. Retinal disease in mice lacking hypoxia-inducible transcription factor-24. Invest. Ophthalmol. Vis. Sci. 46, 1010–1016 (2005).

    Article  Google Scholar 

  31. Ozaki, H. et al. Hypoxia inducible factor-14 is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest. Ophthalmol. Vis. Sci. 40, 182–189 (1999).

    CAS  PubMed  Google Scholar 

  32. Watanabe, T. & Raff, M. C. Retinal astrocytes are immigrants from the optic nerve. Nature 332, 834–837 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Gariano, R. F., Sage, E. H., Kaplan, H. J. & Hendrickson, A. E. Development of astrocytes and their relation to blood vessels in fetal monkey retina. Invest. Ophthalmol. Vis. Sci. 37, 2367–2375 (1996).

    CAS  PubMed  Google Scholar 

  34. Dorrell, M. I., Aguilar, E. & Friedlander, M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest. Ophthalmol. Vis. Sci. 43, 3500–3510 (2002).

    PubMed  Google Scholar 

  35. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  Google Scholar 

  36. Fruttiger, M. et al. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17, 1117–1131 (1996).

    Article  CAS  Google Scholar 

  37. Miyawaki, T. et al. Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J. Neurosci. 24, 8124–8134 (2004).

    Article  CAS  Google Scholar 

  38. West, H., Richardson, M. W. D. & Fruttiger, M. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development 132, 1855–1862 (2005).

    Article  CAS  Google Scholar 

  39. Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).

    Article  CAS  Google Scholar 

  40. Darland, D. C. et al. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 264, 275–288 (2003).

    Article  CAS  Google Scholar 

  41. Shih, S. C. et al. Transforming growth factor β1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo. Proc. Natl Acad. Sci. USA 100, 15859–15864 (2003).

    Article  ADS  CAS  Google Scholar 

  42. Antonelli-Orlidge, A., Saunders, K. B., Smith, S. R. & D'Amore, P. A. An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc. Natl Acad. Sci. USA 86, 4544–4548 (1989).

    Article  ADS  CAS  Google Scholar 

  43. Enge, M. et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 21, 4307–4316 (2002).

    Article  CAS  Google Scholar 

  44. Diaz-Araya, C. M., Provis, J. M., Penfold, P. L. & Billson, F. A. Development of microglial topography in human retina. J. Comp. Neurol. 363, 53–68 (1995).

    Article  CAS  Google Scholar 

  45. Stone, J. et al. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 37, 290–299 (1996).

    CAS  PubMed  Google Scholar 

  46. Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F. & Sage, E. H. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66, 536–547 (1992).

    CAS  PubMed  Google Scholar 

  47. Rehm, H. L. et al. Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J. Neurosci. 22, 4286–4292 (2002).

    Article  CAS  Google Scholar 

  48. Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895 (2004).

    Article  CAS  Google Scholar 

  49. Robitaille, J. et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nature Gen. 32, 326–330 (2002).

    Article  CAS  Google Scholar 

  50. Niehrs, C. Norrin and frizzled; a new vein for the eye. Dev. Cell 6, 453–454 (2004).

    Article  CAS  Google Scholar 

  51. Chan-Ling, T. et al. Astrocyte-endothelial cell relationships during human retinal vascular development. Invest. Ophthalmol. Vis. Sci. 45, 2020–2032 (2004).

    Article  Google Scholar 

  52. Ohlmann, A. et al. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice. J. Neurosci. 25, 1701–1710 (2005).

    Article  CAS  Google Scholar 

  53. Smith, L. E. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 35, 101–111 (1994).

    CAS  PubMed  Google Scholar 

  54. Heckenlively, J. R. et al. Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23, 518–522 (2003).

    Article  Google Scholar 

  55. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  Google Scholar 

  56. Dorrell, M. I. et al. Abnormal retinal vascular development associated with a mutation in the gene for the very low density lipoprotein receptor (VLDLR). Mol. Biol. Cell 14 (Suppl.), 260 (2003).

    Google Scholar 

  57. Grant, M. B. et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nature Med. 8, 607–612 (2002).

    Article  CAS  Google Scholar 

  58. Sengupta, N. et al. The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 4908–4913 (2003).

    Article  Google Scholar 

  59. Otani, A. et al. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nature Med. 8, 1004–1010 (2002).

    Article  CAS  Google Scholar 

  60. Otani, A. et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J. Clin. Invest. 114, 765–774 (2004).

    Article  CAS  Google Scholar 

  61. Dorrell, M. I., Otani, A., Aguilar, E., Moreno, S. K. & Friedlander, M. Adult bone marrow-derived stem cells use R-cadherin to target sites of neovascularization in the developing retina. Blood 103, 3420–3427 (2004).

    Article  CAS  Google Scholar 

  62. Galimi, F., Summers, R. G., van Praag, H., Verma, I. M. & Gage, F. H. A role for bone marrow-derived cells in the vasculature of noninjured CNS. Blood 105, 2400–2402 (2005).

    Article  CAS  Google Scholar 

  63. Arfken, C. L., Reno, P. L., Santiago, J. V. & Klein, R. Development of proliferative diabetic retinopathy in African-Americans and whites with type 1 diabetes. Diabetes Care 21, 792–795 (1998).

    Article  CAS  Google Scholar 

  64. Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  Google Scholar 

  65. Adamis, A. P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450 (1994).

    Article  CAS  Google Scholar 

  66. Koyama, R., Nakanishi, T., Ikeda, T. & Shimizu, A. Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 792, 5–21 (2003).

    Article  CAS  Google Scholar 

  67. Hardy, P. et al. New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot. Essent. Fatty Acids 72, 301–325 (2005).

    Article  CAS  Google Scholar 

  68. Beach, J. M., Schwenzer, K. J., Srinivas, S., Kim, D. & Tiedeman, J. S. Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J. Appl. Physiol. 86, 748–758 (1999).

    Article  CAS  Google Scholar 

  69. Stefansson, E., Machemer, R., de Juan, E., McCuen, B. W. & Peterson, J. Retinal oxygenation and laser treatment in patients with diabetic retinopathy. Am. J. Ophthalmol. 113, 36–38 (1992).

    Article  CAS  Google Scholar 

  70. Harris, A. et al. Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br. J. Ophthalmol. 80, 209–213 (1996).

    Article  CAS  Google Scholar 

  71. Nguyen, Q. D. et al. Supplemental oxygen improves diabetic macular edema: a pilot study. Invest. Ophthalmol. Vis. Sci. 45, 617–624 (2004).

    Article  Google Scholar 

  72. Stefansson, E., Hatchell, D. L., Fisher, B. L., Sutherland, F. S. & Machemer, R. Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats. Am. J. Ophthalmol. 101, 657–664 (1986).

    Article  CAS  Google Scholar 

  73. Stefansson, E., Peterson, J. I. & Wang, Y. H. Intraocular oxygen tension measured with a fiber-optic sensor in normal and diabetic dogs. Am. J. Physiol. 256, H1127–H1133 (1989).

    CAS  PubMed  Google Scholar 

  74. Linsenmeier, R. A. et al. Retinal hypoxia in long-term diabetic cats. Invest. Ophthalmol. Vis. Sci. 39, 1647–1655 (1988).

    Google Scholar 

  75. Poulaki, V. et al. Insulin-like growth factor-1 plays a pathogenetic role in diabetic retinopathy. Am. J. Pathol. 165, 457–469 (2004).

    Article  CAS  Google Scholar 

  76. Gardner, T. W., Antonetti, D. A., Barber, A. J., LaNoue, K. F. & Levison, S. W. Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47 (Suppl. 2), S253–S262 (2002).

    Article  Google Scholar 

  77. Barber, A. J. et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Invest. 102, 783–791 (1998).

    Article  CAS  Google Scholar 

  78. Amin, R. H. et al. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 38, 36–47 (1997).

    CAS  PubMed  Google Scholar 

  79. Krady, J. K. et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54, 1559–1565 (2005).

    Article  CAS  Google Scholar 

  80. Holcik, M., Sonenberg, N. & Korneluk, R. G. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16, 469–473 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following for generously providing material for figures: T. Bennett (Fig. 2b, d), C. Betsholtz (Figs 4c, d, 5c), M. Friedlander (Fig. 6a), M. Fruttiger (Fig. 5d, e), F. Gage (Fig. 6b), F. Galimi (Fig. 6b), A. Otani (Fig. 6a), J. Provis (Fig. 2e) and T. Sandercoe (Fig. 2e). We acknowledge support from the Juvenile Diabetes Research Foundation and the American Diabetes Association (T.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray F. Gariano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gariano, R., Gardner, T. Retinal angiogenesis in development and disease. Nature 438, 960–966 (2005). https://doi.org/10.1038/nature04482

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04482

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing