Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Design principles of a bacterial signalling network

Abstract

Cellular biochemical networks have to function in a noisy environment using imperfect components. In particular, networks involved in gene regulation or signal transduction allow only for small output tolerances, and the underlying network structures can be expected to have undergone evolution for inherent robustness against perturbations1. Here we combine theoretical and experimental analyses to investigate an optimal design for the signalling network of bacterial chemotaxis, one of the most thoroughly studied signalling networks in biology. We experimentally determine the extent of intercellular variations in the expression levels of chemotaxis proteins and use computer simulations to quantify the robustness of several hypothetical chemotaxis pathway topologies to such gene expression noise. We demonstrate that among these topologies the experimentally established chemotaxis network of Escherichia coli has the smallest sufficiently robust network structure, allowing accurate chemotactic response for almost all individuals within a population. Our results suggest that this pathway has evolved to show an optimal chemotactic performance while minimizing the cost of resources associated with high levels of protein expression. Moreover, the underlying topological design principles compensating for intercellular variations seem to be highly conserved among bacterial chemosensory systems2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four possible network topologies of bacterial chemotaxis showing precise adaptation.
Figure 2: Gene expression noise of the chemotaxis proteins.
Figure 3: Effect of the total concentration of signalling proteins on chemotaxis.
Figure 4: Simulated fraction of chemotactic cells as a function of gene expression noise.

Similar content being viewed by others

References

  1. Kitano, H. Biological robustness. Nature Rev. Genet. 5, 826–837 (2004)

    Article  CAS  Google Scholar 

  2. Szurmant, H. & Ordal, G. W. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004)

    Article  CAS  Google Scholar 

  3. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999)

    Article  ADS  CAS  Google Scholar 

  5. von Dassow, G., Meir, E., Munro, E. M. & Ordell, G. M. The segment polarity network is a robust developmental module. Nature 406, 188–191 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Sourjik, V. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12, 569–576 (2004)

    Article  CAS  Google Scholar 

  8. Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol. 5, 1024–1037 (2004)

    Article  CAS  Google Scholar 

  9. Mello, B. & Tu, Y. Perfect and near-perfect adaption in a model of bacterial chemotaxis. Biophys. J. 84, 2943–2956 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Elowitz, M. B., Levine, A. J., Sigga, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Nature 297, 1183–1187 (2002)

    CAS  Google Scholar 

  12. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. & Elowiz, M. B. Gene regulation at the single-cell level. Nature 307, 1962–1965 (2005)

    CAS  Google Scholar 

  13. Kalir, S. et al. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292, 2080–2083 (2001)

    Article  CAS  Google Scholar 

  14. Aldrige, P. & Hughes, K. T. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160–165 (2002)

    Article  Google Scholar 

  15. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Swain, P. S. Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J. Mol. Biol. 344, 965–976 (2004)

    Article  CAS  Google Scholar 

  17. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Webre, D. J., Wolanin, P. M. & Stock, J. B. Bacterial chemotaxis. Curr. Biol. 13, 47–49 (2003)

    Article  Google Scholar 

  21. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Sourjik, V. & Berg, H. C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 99, 123–127 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Sourjik, V. & Berg, H. C. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol. Microbiol. 37, 740–751 (2000)

    Article  CAS  Google Scholar 

  25. Sourjik, V. & Berg, H. C. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Turner, L., Caplan, S. R. & Berg, H. C. Temperature-induced switching of the bacterial flagellar motor. Biophys. J. 71, 2227–2233 (1996)

    Article  CAS  Google Scholar 

  27. Blat, Y., Gillespie, G., Bren, A., Dahlquist, F. W. & Eisenbach, M. Regulation of phosphatase activity in bacterial chemotaxis. J. Mol. Biol. 284, 1191–1199 (1998)

    Article  CAS  Google Scholar 

  28. Almogy, G., Stone, L. & Ben-Tal, N. B. Multi-stage regulation, a key to reliable adaptive biochemical pathways. Biophys. J. 81, 3016–3028 (2001)

    Article  CAS  Google Scholar 

  29. Scharf, B. E., Fahrner, K. A., Turner, L. & Berg, H. C. Control of direction of flagellar rotation in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 95, 201–206 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Raser, J. M. & O'Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Shimizu, M. D. Levin, K. Lipkow and F. Geier for comments on the manuscript, and C. Bechinger, S. Bleil and S. Schulmeister for technical help. This work was supported by ZMBH funding, DFG grants to V.S. and K.B., and the BMBF project ‘Systems of Life–Systems Biology’. Author Contributions V.S. designed the experiments and L.L. carried them out. M.K. performed the mathematical modelling together with K.B. The paper was written by M.K. and V.S. with comments from J.T. L.L. and K.B. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kollmann.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Results, a description of the mathematical modelling, details of tethering cells experiments and additional references. (PDF 228 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollmann, M., Løvdok, L., Bartholomé, K. et al. Design principles of a bacterial signalling network. Nature 438, 504–507 (2005). https://doi.org/10.1038/nature04228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04228

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing