Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structures of ParB bound to DNA reveal mechanism of partition complex formation

Abstract

The faithful inheritance of genetic information, which is essential for all organisms, requires accurate DNA partition (segregation) at cell division. In prokaryotes, partition is mediated by par systems, for which the P1 plasmid system of Escherichia coli is a prototype comprising a partition site and two proteins, ParA and ParB1,2. To form the partition complex necessary for segregation, P1 ParB must recognize a complicated arrangement of A-box and B-box DNA motifs located on opposite ends of a sharply bent parS partition site of 74 bp (refs 3–7). Here we describe structures of ParB bound to partition sites. ParB forms an asymmetric dimer with extended amino-terminal HTH (helix–turn–helix) domains that contact A-boxes. The two HTH domains emanate from a dimerized DNA-binding module composed of a six-stranded β-sheet coiled-coil that binds B-boxes. Strikingly, these individual DNA-binding modules rotate freely about a flexible linker, enabling them to contact several arrangements of A- and B-boxes. Most notably, each DNA-binding element binds to and thus bridges adjacent DNA duplexes. These unique structural features of ParB explain how this protein can bind complex arrays of A- and B-box elements on adjacent DNA arms of the looped partition site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the ParB–parS-small complex.
Figure 2: ParB dimer flexibility and asymmetry.
Figure 3: P1 ParB is a DNA-bridging factor.
Figure 4: ParB interactions with A- and B-box motifs.

Similar content being viewed by others

References

  1. Funnell, B. E. & Slavcev, R. A. in Plasmid Biology (eds Funnell, B. E. & Phillips, G. J.) 81–103 (ASM, Washington DC, 2004)

    Book  Google Scholar 

  2. Surtees, J. A. & Funnell, B. E. Plasmid and chromosome traffic control: how ParA and ParB drive partition. Curr. Top. Dev. Biol. 56, 145–180 (2003)

    Article  CAS  Google Scholar 

  3. Funnell, B. E. Participation of Escherichia coli integration host factor in the P1 plasmid partition system. Proc. Natl Acad. Sci. USA 85, 6657–6661 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Funnell, B. E. & Gagnier, L. The P1 plasmid partition complex at parS: II. Analysis of ParB protein binding activity and specificity. J. Biol. Chem. 268, 3616–3624 (1993)

    CAS  PubMed  Google Scholar 

  5. Bouet, J. Y., Surtees, J. A. & Funnell, B. E. Stoichiometry of P1 plasmid partition complexes. J. Biol. Chem. 275, 8213–8219 (2000)

    Article  CAS  Google Scholar 

  6. Erdmann, N., Petroff, T. & Funnell, B. E. Intracellular localization of P1 ParB protein depends on ParA and parS. Proc. Natl Acad. Sci. USA 96, 14905–14910 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Davis, M. A., Martin, K. A. & Austin, S. J. Specificity switching of the P1 plasmid centromere-like site. EMBO J. 9, 991–998 (1990)

    Article  CAS  Google Scholar 

  8. Edgar, R., Chattoraj, D. K. & Yarmolinsky, M. Pairing of P1 plasmid partition sites by ParB. Mol. Microbiol. 42, 1363–1370 (2001)

    Article  CAS  Google Scholar 

  9. Fung, E., Bouet, J. Y. & Funnell, B. E. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J. 20, 4901–4911 (2001)

    Article  CAS  Google Scholar 

  10. Surtees, J. A. & Funnell, B. E. The DNA binding domains of P1 ParB and the architecture of the P1 plasmid partition complex. J. Biol. Chem. 276, 12385–12394 (2001)

    Article  CAS  Google Scholar 

  11. Martin, K. A., Davis, M. A. & Austin, S. J. Fine structure analysis of the P1 plasmid partition site. J. Bacteriol. 173, 3630–3634 (1991)

    Article  CAS  Google Scholar 

  12. Hayes, F. & Austin, S. Topological scanning of the P1 plasmid partition site. J. Mol. Biol. 243, 190–198 (1994)

    Article  CAS  Google Scholar 

  13. Funnell, B. E. The P1 plasmid partition complex at parS. The influence of Escherichia coli integration host factor and of substrate topology. J. Biol. Chem. 266, 14328–14337 (1991)

    CAS  PubMed  Google Scholar 

  14. Rodionov, O., Lobocka, M. & Yarmolinsky, M. Silencing of genes flanking the P1 plasmid centromere. Science 283, 546–549 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Rodionov, O. & Yarmolinsky, M. Plasmid partitioning and the spreading of P1 partition protein ParB. Mol. Microbiol. 283, 1215–1223 (2004)

    Article  Google Scholar 

  16. Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247 (1999)

    Article  CAS  Google Scholar 

  17. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005)

    Article  CAS  Google Scholar 

  18. Lobocka, M. & Yarmolinsky, M. P1 plasmid partition: a mutational analysis of ParB. J. Mol. Biol. 52, 366–382 (1996)

    Article  Google Scholar 

  19. Radnedge, L., Davis, M. A. & Austin, S. J. P1 and P7 plasmid partition: ParB protein bound to its partition site makes a separate discriminator contact with the DNA that determines species specificity. EMBO J. 15, 1155–1162 (1996)

    Article  CAS  Google Scholar 

  20. Radnedge, L., Youngren, B., Davis, M. & Austin, S. Probing the structure of complex macromolecular interactions by homolog specificity scanning: the P1 and P7 plasmid partitions systems. EMBO J. 17, 6076–6085 (1998)

    Article  CAS  Google Scholar 

  21. Hayes, F. & Austin, S. J. Specificity determinants of the P1 and P7 plasmid centromere analogs. Proc. Natl Acad. Sci. USA 90, 9228–9232 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Khare, D., Ziegelin, G., Lanka, E. & Heinemann, U. Sequence specific DNA binding determined by contacts outside the helix–turn–helix motif of the ParB homolog KorB. Nature Struct. Mol. Biol. 11, 656–663 (2004)

    Article  CAS  Google Scholar 

  23. Leonard, T. A., Butler, P. J. & Lowe, J. Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol. Microbiol. 53, 419–432 (2004)

    Article  CAS  Google Scholar 

  24. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure determination. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  25. Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  26. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  27. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  28. Kissinger, C. R., Gehlhaar, D. K. & Fogel, D. B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D. 55, 484–491 (1999)

    Article  CAS  Google Scholar 

  29. Delano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, 2002)

    Google Scholar 

  30. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Advanced Light Source and their support staff, with special thanks to C. Ralston. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy at the Lawrence Berkeley National Laboratory. This work was supported by a Burroughs Wellcome Career Development Award (to M.A.S.) and a grant from the Canadian Institutes of Health Research (to B.E.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Schumacher.

Ethics declarations

Competing interests

The X-ray crystallographic coordinates and structure factor files have been deposited with the Protein Data Bank under accession code 1ZX4. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Data, Supplementary Methods, Supplementary Figures 1–3 and Supplementary Table 1. (DOC 1587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, M., Funnell, B. Structures of ParB bound to DNA reveal mechanism of partition complex formation. Nature 438, 516–519 (2005). https://doi.org/10.1038/nature04149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04149

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing