Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reconstruction of genetic circuits

Abstract

The complex genetic circuits found in cells are ordinarily studied by analysis of genetic and biochemical perturbations. The inherent modularity of biological components like genes and proteins enables a complementary approach: one can construct and analyse synthetic genetic circuits based on their natural counterparts. Such synthetic circuits can be used as simple in vivo models to explore the relation between the structure and function of a genetic circuit. Here we describe recent progress in this area of synthetic biology, highlighting newly developed genetic components and biological lessons learned from this approach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural and synthetic genetic circuits.
Figure 2: Modular components in synthetic circuits.
Figure 3: Lessons from synthetic biology.

Similar content being viewed by others

References

  1. Hardin, P. E. The circadian timekeeping system of Drosophila. Curr. Biol. 15, R714–R722 (2005)

    CAS  PubMed  Google Scholar 

  2. Cyran, S. A. et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112, 329–341 (2003)

    CAS  PubMed  Google Scholar 

  3. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    ADS  CAS  PubMed  Google Scholar 

  4. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behaviour in Escherichia coli. Cell 113, 597–607 (2003)

    CAS  PubMed  Google Scholar 

  5. Fung, E. et al. A synthetic gene–metabolic oscillator. Nature 435, 118–122 (2005)

    ADS  CAS  PubMed  Google Scholar 

  6. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)

    ADS  CAS  PubMed  Google Scholar 

  7. Alves, R. & Savageau, M. A. Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16, 786–798 (2000)

    CAS  PubMed  Google Scholar 

  8. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004)

    ADS  CAS  PubMed  Google Scholar 

  9. Judson, H. The Eighth Day of Creation (Simon and Schuster, New York, 1979)

    Google Scholar 

  10. Ingolia, N. T. & Murray, A. W. The ups and downs of modeling the cell cycle. Curr. Biol. 14, R771–R777 (2004)

    CAS  PubMed  Google Scholar 

  11. Bolon, D. N., Voigt, C. A. & Mayo, S. L. De novo design of biocatalysts. Curr. Opin. Chem. Biol. 6, 125–129 (2002)

    CAS  PubMed  Google Scholar 

  12. Kortemme, T. & Baker, D. Computational design of protein-protein interactions. Curr. Opin. Chem. Biol. 8, 91–97 (2004)

    CAS  PubMed  Google Scholar 

  13. Brent, R. A partnership between biology and engineering. Nature Biotechnol. 22, 1211–1214 (2004)

    CAS  Google Scholar 

  14. McDaniel, R. & Weiss, R. Advances in synthetic biology: on the path from prototypes to applications. Curr. Opin. Biotechnol. 16, 476–483 (2005)

    CAS  PubMed  Google Scholar 

  15. Benner, S. A. & Sismour, A. M. Synthetic biology. Nature Rev. Genet. 6, 533–543 (2005)

    CAS  PubMed  Google Scholar 

  16. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002)

    ADS  CAS  PubMed  Google Scholar 

  17. Arkin, A. P. Synthetic cell biology. Curr. Opin. Biotechnol. 12, 638–644 (2001)

    CAS  PubMed  Google Scholar 

  18. Pawson, T. & Linding, R. Synthetic modular systems–reverse engineering of signal transduction. FEBS Lett. 579, 1808–1814 (2005)

    CAS  PubMed  Google Scholar 

  19. Endy, D. Foundations for engineering biology. Nature doi:10.1038/nature04342 (this issue).

  20. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    ADS  CAS  PubMed  Google Scholar 

  21. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)

    ADS  CAS  PubMed  Google Scholar 

  22. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA 101, 8414–8419 (2004)

    ADS  CAS  PubMed  Google Scholar 

  23. Rosenfeld, N. & Alon, U. Response delays and the structure of transcription networks. J. Mol. Biol. 329, 645–654 (2003)

    CAS  PubMed  Google Scholar 

  24. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005)

    ADS  CAS  PubMed  Google Scholar 

  25. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005)

    ADS  CAS  PubMed  Google Scholar 

  26. Kramer, B. P. et al. An engineered epigenetic transgene switch in mammalian cells. Nature Biotechnol. 22, 867–870 (2004)

    CAS  Google Scholar 

  27. Kramer, B. P. & Fussenegger, M. Hysteresis in a synthetic mammalian gene network. Proc. Natl Acad. Sci. USA 102, 9517–9522 (2005)

    ADS  CAS  PubMed  Google Scholar 

  28. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005)

    ADS  CAS  PubMed  Google Scholar 

  29. Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003)

    ADS  CAS  PubMed  Google Scholar 

  30. Bayer, T. S. & Smolke, C. D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnol. 23, 337–343 (2005)

    CAS  Google Scholar 

  31. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnol. 22, 841–847 (2004)

    CAS  Google Scholar 

  32. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796–802 (2003)

    CAS  Google Scholar 

  33. Henke, J. M. & Bassler, B. L. Bacterial social engagements. Trends Cell Biol. 14, 648–656 (2004)

    CAS  PubMed  Google Scholar 

  34. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)

    ADS  CAS  PubMed  Google Scholar 

  35. Ephrussi, A. & St Johnston, D. Seeing is believing: the bicoid morphogen gradient matures. Cell 116, 143–152 (2004)

    CAS  PubMed  Google Scholar 

  36. Rackham, O. & Chin, J. W. A network of orthogonal ribosome·mRNA pairs. Nature Chem. Biol. 1, 159–166 (2005)

    CAS  Google Scholar 

  37. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    ADS  CAS  PubMed  Google Scholar 

  38. Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002)

    CAS  PubMed  Google Scholar 

  39. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004)

    ADS  CAS  PubMed  Google Scholar 

  40. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002)

    ADS  CAS  PubMed  Google Scholar 

  41. Dueber, J. E., Yeh, B. J., Chak, K. & Lim, W. A. Reprogramming control of an allosteric signalling switch through modular recombination. Science 301, 1904–1908 (2003)

    ADS  CAS  PubMed  Google Scholar 

  42. Park, S. H., Zarrinpar, A. & Lim, W. A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064 (2003)

    ADS  CAS  PubMed  Google Scholar 

  43. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992)

    ADS  CAS  PubMed  Google Scholar 

  45. Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002)

    ADS  CAS  PubMed  Google Scholar 

  46. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    ADS  CAS  PubMed  Google Scholar 

  47. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000)

    ADS  CAS  PubMed  Google Scholar 

  48. Xiong, W. & Ferrell, J. E. Jr A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003)

    ADS  CAS  PubMed  Google Scholar 

  49. Guet, C. C. Tinkering with Bio-molecular Networks Thesis, Princeton Univ. (2004).

Download references

Acknowledgements

Synthetic biology work in the laboratory is supported by a Burroughs-Wellcome CASI award, The HFSP program and the Searle Scholars program. D.S. would like to acknowledge the support of the Yad Hanadiv Foundation and the CBCD at Caltech. We would like to thank J. W. Chin, C. Guet, S. Leibler, J. Liao, W. Lim, C. Smolke and R. Weiss for contributing figures. We are grateful to R. Kishony, E. Sprinzak, C. Dalal, G. Suel and members of the laboratory for discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Elowitz.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprinzak, D., Elowitz, M. Reconstruction of genetic circuits. Nature 438, 443–448 (2005). https://doi.org/10.1038/nature04335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04335

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing