Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing carrier dynamics in nanostructures by picosecond cathodoluminescence

Abstract

Picosecond and femtosecond spectroscopy allow the detailed study of carrier dynamics in nanostructured materials1. In such experiments, a laser pulse normally excites several nanostructures at once. However, spectroscopic information may also be acquired using pulses from an electron beam in a modern electron microscope, exploiting a phenomenon called cathodoluminescence. This approach offers several advantages. The multimode imaging capabilities of the electron microscope enable the correlation of optical properties (via cathodoluminescence) with surface morphology (secondary electron mode) at the nanometre scale2. The broad energy range of the electrons can excite wide-bandgap materials, such as diamond- or gallium-nitride-based structures that are not easily excited by conventional optical means. But perhaps most intriguingly, the small beam can probe a single selected nanostructure. Here we apply an original time-resolved cathodoluminescence set-up to describe carrier dynamics within single gallium-arsenide-based pyramidal nanostructures3 with a time resolution of 10 picoseconds and a spatial resolution of 50 nanometres. The behaviour of such charge carriers could be useful for evaluating elementary components in quantum computers4,5, optical quantum gates6 or single photon sources7,8,9 for quantum cryptography10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up, and spatial and temporal resolution.
Figure 2: InGaAs/AlGaAs pyramidal quantum structures.
Figure 3: Cathodoluminescence spectrum and images.
Figure 4: Streak image.
Figure 5: Luminescence temporal profiles versus excitation points.
Figure 6: QWR and VQWR fits.

Similar content being viewed by others

References

  1. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Ch. 8 (Springer, Berlin, 1999)

    Book  Google Scholar 

  2. Reimer, L. Scanning Electron Microscopy Ch. 1 (Springer, Berlin, 1998)

    Book  Google Scholar 

  3. Kapon, E. et al. Site- and energy-controlled pyramidal quantum dot heterostructures. Physica E 25, 288–297 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Imamoglu, A. Are quantum dots useful for quantum computation? Physica E 16, 47–50 (2003)

    Article  ADS  Google Scholar 

  6. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Gerard, J. M. & Gayral, B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089–2095 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Baier, M. H. et al. Single photon emission from site-controlled pyramidal quantum dots. Appl. Phys. Lett. 84, 648–650 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Gisin, N., Ribordy, G. G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  11. Warburton, R. J. Self-assembled semiconductor quantum dots. Contemp. Phys. 43, 351–364 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Korovyanko, O. J., Sheng, C. X., Vardeny, Z. V., Dalton, A. B. & Baughman, R. H. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. Phys. Rev. Lett. 92, 017403 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Gustafsson, A., Pistol, M. E., Montelius, L. & Samuelson, L. Local probe techniques for luminescence studies of low-dimensional semiconductor structures. J. Appl. Phys. 84, 1715–1775 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Menniger, J., Jahn, U., Brandt, O., Yang, H. & Ploog, K. Identification of optical transitions in cubic and hexagonal GaN by spatially resolved cathodoluminescence. Phys. Rev. B 53, 1881–1885 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Steckenborn, A., Munzel, H. & Bimberg, D. Cathodoluminescence lifetime pattern of Gaas-surfaces around dislocations. J. Lumin. 24–5, 351–354 (1981)

    Article  Google Scholar 

  16. Bell, A. et al. Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1-xN layers. J. Appl. Phys. 95, 4670–4674 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Vetter, U., Hofsass, H. & Taniguchi, T. Visible cathodoluminescence from Eu-implanted single- and polycrystal c-BN annealed under high-temperature, high-pressure conditions. Appl. Phys. Lett. 84, 4286–4288 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Diaz-Guerra, C., Piqueras, J., Castaldini, A., Cavallini, A. & Polenta, L. Time-resolved cathodoluminescence and photocurrent study of the yellow band in Si-doped GaN. J. Appl. Phys. 94, 2341–2346 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Turck, V. et al. Time-resolved spectroscopy of single quantum dots: Evidence for phonon-assisted carrier feeding. Phys. Status Solidi B 224, 643–647 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Zhang, X., Rich, D. H., Kobayashi, J. T., Kobayashi, N. P. & Dapkus, P. D. Carrier relaxation and recombination in an InGaN/GaN quantum well probed with time-resolved cathodoluminescence. Appl. Phys. Lett. 73, 1430–1432 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Elsayedali, H. E. & Herman, J. W. Ultrahigh-vacuum picosecond laser-driven electron-diffraction system. Rev. Sci. Instrum. 61, 1636–1647 (1990)

    Article  ADS  Google Scholar 

  22. May, P., Halbout, J. M. & Chiu, G. Picosecond photoelectron scanning electron-microscope for noncontact testing of integrated-circuits. Appl. Phys. Lett. 51, 145–147 (1987)

    Article  ADS  Google Scholar 

  23. Kong, S. H., Kinrosswright, J., Nguyen, D. C., Sheffield, R. L. & Weber, M. E. Performance of cesium telluride photocathodes as an electron source for the Los-Alamos advanced fel. Nucl. Instrum. Methods A 358, 284–286 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Miller, R. J. D. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Williamson, J. C., Cao, J. M., Ihee, H., Frey, H. & Zewail, A. H. Clocking transient chemical changes by ultrafast electron diffraction. Nature 386, 159–162 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Hartmann, A., Ducommun, Y., Kapon, E., Hohenester, U. & Molinari, E. Few-particle effects in semiconductor quantum dots: Observation of multicharged excitons. Phys. Rev. Lett. 84, 5648–5651 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Piermarocchi, C., Chen, P., Sham, L. J. & Steel, D. G. Optical RKKY interaction between charged semiconductor quantum dots. Phys. Rev. Lett. 89, 167402 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Leifer, K., Hartmann, A., Ducommun, Y. & Kapon, E. Carrier transport and luminescence in inverted-pyramid quantum structures. Appl. Phys. Lett. 77, 3923–3925 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Hoan and J. P. Hervé from OPEA and our technicians R. Rochat and N. Leiser for their help. We are also indebted to K. Leifer for scientific discussions of our results. We also thank M. Gatri and F. Füzesi, who developed part of the set-up for their diploma. This work was supported by the Swiss National Science Foundation, NCCR project ‘Quantum Photonics’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Merano.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merano, M., Sonderegger, S., Crottini, A. et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479–482 (2005). https://doi.org/10.1038/nature04298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04298

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing