Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Density of hydrous silicate melt at the conditions of Earth's deep upper mantle

Abstract

The chemical evolution of the Earth and the terrestrial planets is largely controlled by the density of silicate melts. If melt density is higher than that of the surrounding solid, incompatible elements dissolved in the melt will be sequestered in the deep mantle1,2. Previous studies on dry (water-free) melts showed that the density of silicate melts can be higher than that of surrounding solids under deep mantle conditions3,4,5,6,7,8. However, melts formed under deep mantle conditions are also likely to contain some water2, which will reduce the melt density. Here we present data constraining the density of hydrous silicate melt at the conditions of 410 km depth. We show that the water in the silicate melt is more compressible than the other components, and therefore the effect of water in reducing melt density is markedly diminished under high-pressure conditions. Our study indicates that there is a range of conditions under which a (hydrous) melt could be trapped at the 410-km boundary and hence incompatible elements could be sequestered in the deep mantle, although these conditions are sensitive to melt composition as well as the composition of the surrounding mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Back-scattered electron images of run products.
Figure 3: Compression curves of the hydrous melts and density marker (diamond) at 2,170 K.
Figure 4: Densities of various hydrous melts with 5 wt% H 2O and dry melts at 410 km depth as a function of the FeO content.
Figure 5: The condition of density crossover between the hydrous melt and surrounding silicate solid at 410 km depth for a range of the partial molar volume of water.

Similar content being viewed by others

References

  1. Stolper, E. M., Walker, D., Hager, B. H. & Hays, J. F. Melt segregation from partially molten source regions: the importance of melt density and source region size. J. Geophys. Res. 86, 6261–6271 (1981)

    Article  ADS  CAS  Google Scholar 

  2. Bercovici, D. & Karato, S. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Agee, C. B. & Walker, D. Olivine flotation in mantle melt. Phys. Earth Planet. Inter. 114, 315–324 (1988)

    Article  Google Scholar 

  4. Ohtani, E., Suzuki, A. & Kato, T. Flotation of olivine in the peridotite melt at high pressure. Proc. Jpn Acad. 69, 23–28 (1993)

    Article  CAS  Google Scholar 

  5. Suzuki, A., Ohtani, E. & Kato, T. Flotation of diamond in mantle melt at high pressure. Science 269, 216–218 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Suzuki, A., Ohtani, E. & Kato, T. Density and thermal expansion of a peridotite melt at high pressure. Phys. Earth Planet. Inter. 107, 53–61 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Suzuki, A. & Ohtani, E. Density of peridotite melts at high pressure. Phys. Chem. Miner. 30, 449–456 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Ohtani, E. & Maeda, M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Phys. Earth Planet. Inter. 193, 69–75 (2001)

    Article  CAS  Google Scholar 

  9. Ochs, F. A. III & Lange, R. A. The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: new measurements and an internally consistent model. Contrib. Mineral. Petrol. 129, 155–165 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Inoue, T. & Sawamoto, H. in High-pressure Research: Application to Earth and Planetary Sciences (eds Shono, Y. & Manghnani, H.) 323–331 (Terra Scientific, Tokyo/American Geophysical Union, Washington DC, 1992)

    Google Scholar 

  11. Inoue, T. Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa. Phys. Earth Planet. Inter. 85, 237–263 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Litasov, K. & Ohtani, E. Phase relations and melt compositions in CMAS-pyrolite-H2O system up to 25 GPa. Phys. Earth Planet. Inter. 134, 105–127 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Takahashi, E., Shimazaki, T., Tsuzaki, Y. & Yoshida, H. Melting study of a peridotite KLB-1 to 6.5 GPa and the origin of basaltic magmas. Phil. Trans. R. Soc. Lond. A 342, 105–120 (1993)

    Article  ADS  CAS  Google Scholar 

  14. Matsukage, K. N. & Kubo, K. Chromian spinel during melting experiments of dry peridotite (KLB-1) at 1.0-2.5 GPa. Am. Mineral. 88, 1271–1278 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Bottinga, Y. & Weill, D. F. Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am. J. Sci. 269, 169–182 (1970)

    Article  ADS  CAS  Google Scholar 

  16. Burnham, C. W. & Davis, N. F. The role of H2O in silicate melts: I P-V-T relations in the system NaAlSi3O8-H2O to 10 kilobars and 1000°C. Am. J. Sci. 270, 54–79 (1971)

    Article  ADS  CAS  Google Scholar 

  17. Ito, E. & Katsura, T. A temperature profile of the mantle transition zone. Geophys. Res. Lett. 16, 425–528 (1989)

    Article  ADS  CAS  Google Scholar 

  18. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  19. Matsukage, K. N., Nishihara, Y. & Karato, S. Seismological signature of chemical differentiation of Earth's upper mantle. J. Geophys. Res. (in the press)

  20. Nishihara, Y. & Takahashi, E. Phase relation and physical properties of an Al-depleted komatiite to 23 GPa. Earth Planet. Sci. Lett. 190, 65–77 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Fei, Y. in Mineral Physics & Crystallography, A Handbook of Physical Constants (ed. Ahrens, T. J.) 29–44 (American Geophysical Union, Washington DC, 1995)

    Google Scholar 

  22. Agee, C. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Nishihara, Y., Shinmei, T. & Karato, S. Grain-growth kinetics in wadsleyite: effects of chemical environment. Phys. Earth Planet. Inter. (in the press)

  24. Zhang, J., Li, B., Utsumi, W. & Liberman, R. C. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys. Chem. Miner. 23, 1–10 (1996)

    Article  ADS  Google Scholar 

  25. Morishima, H. et al. The phase boundary between α-Mg2SiO4 and β-Mg2SiO4 determined by in-situ X-ray observation. Science 265, 1202–1203 (2004)

    Article  ADS  Google Scholar 

  26. Li, J., Hadidiacos, C., Mao, H-K., Fei, Y. & Hemley, R. J. Effect of pressure on thermocouples in a multi-anvil apparatus. High Press. Res. 23, 389–401 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Lange, R. A. & Carmichael, I. S. E. Density of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: new measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51, 2931–2946 (1987)

    Article  ADS  CAS  Google Scholar 

  28. Lange, R. A. A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib. Mineral. Petrol. 130, 1–11 (1997)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Ochs, F. A. III & Lange, R. A. The density of hydrous magmatic liquid. Science 283, 1314–1317 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Richet, P. et al. Water and the density of silicate glasses. Contrib. Mineral. Petrol. 138, 337–347 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Nishihara for advice on experimental techniques and discussions, and H. Sumiya for the supply of single crystals of diamond. This work was supported by NSF (S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoko N. Matsukage.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsukage, K., Jing, Z. & Karato, Si. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle. Nature 438, 488–491 (2005). https://doi.org/10.1038/nature04241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04241

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing