Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome

Abstract

Phytochromes are red/far-red light photoreceptors that direct photosensory responses across the bacterial, fungal and plant kingdoms. These include photosynthetic potential and pigmentation in bacteria as well as chloroplast development and photomorphogenesis in plants. Phytochromes consist of an amino-terminal region that covalently binds a single bilin chromophore, followed by a carboxy-terminal dimerization domain that often transmits the light signal through a histidine kinase relay. Here we describe the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans phytochrome assembled with its chromophore biliverdin in the Pr ground state. Our model, refined to 2.5 Å resolution, reaffirms Cys 24 as the chromophore attachment site, locates key amino acids that form a solvent-shielded bilin-binding pocket, and reveals an unusually formed deep trefoil knot that stabilizes this region. The structure provides the first three-dimensional glimpse into the photochromic behaviour of these photoreceptors and helps to explain the evolution of higher plant phytochromes from prokaryotic precursors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of Dr CBD.
Figure 2: Structure of the deep trefoil knot.
Figure 3: Structure and linkage of biliverdin within Dr CBD.
Figure 4: Structural conservation and evolution of phytochrome photoreceptors.

Similar content being viewed by others

References

  1. Vierstra, R. D. & Karniol, B. in Handbook of Photosensory Receptors (eds Briggs, W. R. & Spudich, J. L.) 171–196 (Wiley, Weinheim, 2005)

    Book  Google Scholar 

  2. Quail, P. H. Phytochrome photosensory signalling networks. Nature Rev. Mol. Cell Biol. 3, 85–93 (2002)

    Article  CAS  Google Scholar 

  3. Smith, H. Physiological and ecological functions with the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 269–315 (1995)

    Article  Google Scholar 

  4. Karniol, B., Wagner, J. R., Walker, J. M. & Vierstra, R. D. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem. J. 392, 103–116 (2005)

    Article  CAS  Google Scholar 

  5. Davis, S. J., Vener, A. V. & Vierstra, R. D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 2517–2520 (1999)

    Article  CAS  Google Scholar 

  6. Wu, S. H. & Lagarias, J. C. Defining the bilin lyase domain: lessons from the extended phytochrome superfamily. Biochemistry 39, 13487–13495 (2000)

    Article  CAS  Google Scholar 

  7. Cherry, J. R. et al. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell 5, 565–575 (1993)

    Article  CAS  Google Scholar 

  8. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32D, 138–141 (2004)

    Article  Google Scholar 

  9. Yildiz, O. et al. Crystal structure and interactions of the Pas repeat region of the Drosophila clock protein Period. Mol. Cell 17, 69–82 (2005)

    Article  CAS  Google Scholar 

  10. Razeto, A. et al. Structure of the Ncoa-1/Src-1 Pas-B domain bound to the Lxxll motif of the Stat6 transactivation domain. J. Mol. Biol. 336, 319–329 (2004)

    Article  CAS  Google Scholar 

  11. Lamparter, T. et al. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. Biochemistry 43, 3659–3669 (2004)

    Article  CAS  Google Scholar 

  12. Bhoo, S. H. et al. Phytochrome photochromism probed by site-directed mutations and chromophore esterification. J. Am. Chem. Soc. 48, 11717–11718 (1997)

    Article  Google Scholar 

  13. Taylor, W. R. A deeply knotted protein structure and how it might fold. Nature 406, 916–919 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Nureki, O. et al. An enzyme with a deep trefoil knot for the active-site architecture. Acta Crystallogr. D 58, 1129–1137 (2002)

    Article  Google Scholar 

  15. Taylor, W. R. & Lin, K. Protein knots: a tangled problem. Nature 421, 25 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Zarembinski, T. I. et al. Deep trefoil knot implicated in RNA binding found in an archaebacterial protein. Proteins Struct. Funct. Genet. 50, 177–183 (2003)

    Article  CAS  Google Scholar 

  17. Mallam, A. L. & Jackson, S. E. Folding studies on a knotted protein. J. Mol. Biol. 346, 1409–1421 (2005)

    Article  CAS  Google Scholar 

  18. Liu, Y. & Eisenberg, D. 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285–1299 (2002)

    Article  CAS  Google Scholar 

  19. Vaguine, A. A., Richelle, J. & Wodak, S. J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D 55, 191–205 (1999)

    Article  CAS  Google Scholar 

  20. Kneip, C. et al. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr → Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. Biochemistry 38, 15185–15192 (1999)

    Article  CAS  Google Scholar 

  21. Mroginski, M. A. et al. Determination of the chromophore structures in the photoinduced reaction cycle of phytochrome. J. Am. Chem. Soc. 126, 16734–16735 (2004)

    Article  CAS  Google Scholar 

  22. Braslavsky, S. E. in Photochromisms, Molecules and Systems (eds BrouasLaurent, H. & BrouasLaurent, D. H.) 738–755 (Elsevier Science, Amsterdam, 2003)

    Google Scholar 

  23. Duerring, M., Schmidt, G. B. & Huber, R. Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolution. J. Mol. Biol. 217, 577–592 (1991)

    Article  CAS  Google Scholar 

  24. Brejc, K., Ficner, R., Huber, R. & Steinbacher, S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J. Mol. Biol. 249, 424–440 (1995)

    Article  CAS  Google Scholar 

  25. Hanzawa, H. et al. In vitro assembly of phytochrome B apoprotein with synthetic analogs of the phytochrome chromophore. Proc. Natl Acad. Sci. USA 98, 3612–3617 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Tu, S.-L. & Lagarias, J. C. in Handbook of Photosensory Receptors (eds Briggs, W. R. & Spudich, J. L.) 121–149 (Wiley, Weinheim, 2005)

    Book  Google Scholar 

  27. Fodor, S. P., Lagarias, J. C. & Mathies, R. A. Resonance Raman analysis of the Pr and Pfr forms of phytochrome. Biochemistry 29, 11141–11146 (1990)

    Article  CAS  Google Scholar 

  28. Inomata, K. et al. Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photosensitive Pr- and Pfr-like adducts. J. Biol. Chem. 280, 24491–24497 (2005)

    Article  CAS  Google Scholar 

  29. Gartner, W. & Braslavsky, S. E. in Photoreceptors in Light Signaling (ed. Baschauer, A.) 136–180 (Royal Soc. Chemistry, Cambridge, UK, 2004)

    Google Scholar 

  30. Cheng, M., Tao, Y., Lim, J., Shaw, A. & Chory, J. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Curr. Biol. 15, 637–642 (2005)

    Article  Google Scholar 

  31. Ryu, J. S. et al. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell 120, 395–406 (2005)

    Article  CAS  Google Scholar 

  32. Lamparter, T. et al. Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring A vinyl side chain. J. Biol. Chem. 278, 33786–33792 (2003)

    Article  CAS  Google Scholar 

  33. Fischer, A. J. & Lagarias, J. C. Harnessing phytochrome's glowing potential. Proc. Natl Acad. Sci. USA 101, 17334–17339 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Mutsuda, M., Michel, K. P., Zhang, X. F., Montgomery, B. L. & Golden, S. S. Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J. Biol. Chem. 278, 19102–19110 (2003)

    Article  CAS  Google Scholar 

  35. Terauchi, K., Montgomery, B. L., Grossman, A. R., Lagarias, J. C. & Kehoe, D. M. RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness. Mol. Microbiol. 51, 567–577 (2004)

    Article  CAS  Google Scholar 

  36. Yoshihara, S., Katayama, M., Geng, X. X. & Ikeuchi, M. Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms. Plant Cell Physiol. 45, 1729–1737 (2004)

    Article  CAS  Google Scholar 

  37. Lagarias, J. C. & Rapoport, H. Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore. J. Am. Chem. Soc. 102, 4821–4828 (1980)

    Article  CAS  Google Scholar 

  38. Yeh, K. C., Wu, S. H., Murphy, J. T. & Lagarias, J. C. A cyanobacterial phytochrome two-component light sensory system. Science 277, 1505–1508 (1997)

    Article  CAS  Google Scholar 

  39. Bhoo, S. H., Davis, S. J., Walker, J., Karniol, B. & Vierstra, R. D. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776–779 (2001)

    Article  ADS  CAS  Google Scholar 

  40. Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L. & Sweet, R. M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993)

    Article  ADS  CAS  Google Scholar 

  41. Chayen, N. E., Shaw-Stewart, P. D. & Blow, D. M. Microbatch crystallization under oil—a new technique allowing many small-volume crystallization trials. J. Cryst. Growth 122, 176–180 (1992)

    Article  ADS  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. in Macromolecular Crystallography Part A (eds Carter, C. W. Jr & Sweet, R. M.) 307–326 (Academic, New York, 1997)

    Book  Google Scholar 

  43. Grosse-Kunstleve, R. W. & Adams, P. D. Substructure search procedures for macromolecular structures. Acta Crystallogr. D 59, 1974–1977 (2003)

    Article  CAS  Google Scholar 

  44. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)

    Article  CAS  Google Scholar 

  45. Perrakis, A., Morris, R. M. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  46. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification, and model building. J. Synch. Radiat. 11, 49–52 (2004)

    Article  CAS  Google Scholar 

  47. McRee, D. E. XtalView Xfit—A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999)

    Article  CAS  Google Scholar 

  48. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Karniol, S. Beale and K. Satyshur for technical advice and acknowledge the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor for the support of this research program. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. This work was supported by grants from the US National Science Foundation (R.D.V. and K.T.F.), the US Department of Energy (R.D.V.), and the W.M. Keck Foundation (K.T.F.). Author Contributions J.R.W. purified protein and grew and characterized crystals; J.S.B. collected data and carried out initial phase determination; K.T.F. and J.R.W. phased, modelled, refined and validated structure; R.D.V. initiated collaboration; K.T.F. designed structure experiments; J.R.W., K.T.F. and R.D.V. interpreted the structure and prepared the manuscript and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina T. Forest.

Ethics declarations

Competing interests

Atomic coordinates and structure factor amplitudes have been deposited in the Protein Data Bank (accession code 1ZTU). Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

This table includes all data collection and scaling statistics as well as refinement statistics for the crystal structure determination of phytochrome. (DOC 48 kb)

Supplementary Figure 1

Spectra of native, selenomethionine labeled, and crystalline DrCBD. (PDF 266 kb)

Supplementary Figure 2

Sequence alignment of plant, cyanobacterial and bacterial phytochromes with secondary structure elements indicated (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, J., Brunzelle, J., Forest, K. et al. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331 (2005). https://doi.org/10.1038/nature04118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04118

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing