Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model

Abstract

The bands of Jupiter represent a global system of powerful winds. Broad eastward equatorial jets are flanked by smaller-scale, higher-latitude jets flowing in alternating directions1,2. Jupiter's large thermal emission suggests that the winds are powered from within3,4, but the zonal flow depth is limited by increasing density and electrical conductivity in the molecular hydrogen–helium atmosphere towards the centre of the planet5. Two types of planetary flow models have been explored: shallow-layer models reproduce multiple high-latitude jets, but not the equatorial flow system6,7,8, and deep convection models only reproduce an eastward equatorial jet with two flanking neighbours9,10,11,12,13,14. Here we present a numerical model of three-dimensional rotating convection in a relatively thin spherical shell that generates both types of jets. The simulated flow is turbulent and quasi-two-dimensional and, as observed for the jovian jets, simulated jet widths follow Rhines' scaling theory2,12,13,15. Our findings imply that Jupiter's latitudinal transition in jet width corresponds to a separation between the bottom-bounded flow structures in higher latitudes and the deep equatorial flows.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of rapidly rotating turbulent convection in a spherical shell.
Figure 2: Zonal flow for Jupiter and the numerical simulation.
Figure 3: Measured jet widths compared to jet widths predicted by Rhines scaling for Jupiter (a) and the numerical model (b).

Similar content being viewed by others

References

  1. Porco, C. C. et al. Cassini imaging of Jupiter's atmosphere, satellites and rings. Science 299, 1541–1547 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Vasavada, A. R. & Showman, A. P. Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ingersoll, A. P. Pioneer 10 and 11 observations and the dynamics of Jupiter's atmosphere. Icarus 29, 245–253 (1976)

    Article  ADS  Google Scholar 

  4. Pirraglia, J. A. Meridional energy balance of Jupiter. Icarus 59, 169–176 (1984)

    Article  ADS  Google Scholar 

  5. Guillot, T., Stevenson, D. J., Hubbard, W. & Saumon, D. in Jupiter, the Planet, Satellites and Magnetosphere (eds Bagenal, F., Dowling, T. E. & McKinnon, W. B.) 35–57 (Cambridge Univ. Press, Cambridge, 2004)

    Google Scholar 

  6. Cho, J. Y.-K. & Polvani, L. M. The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273, 335–337 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Williams, G. P. Planetary circulations. 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399–1426 (1978)

    Article  ADS  Google Scholar 

  8. Williams, G. P. Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. J. Atmos. Sci. 60, 1270–1296 (2003)

    Article  ADS  Google Scholar 

  9. Aurnou, J. M. & Olson, P. L. Strong zonal winds from thermal convection in a rotating spherical shell. Geophys. Res. Lett. 28, 2557–2559 (2001)

    Article  ADS  Google Scholar 

  10. Christensen, U. R. Zonal flow driven by deep convection on the major planets. Geophys. Res. Lett. 28, 2553–2556 (2001)

    Article  ADS  Google Scholar 

  11. Christensen, U. R. Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech. 470, 115–133 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Yano, J. I., Talagrand, O. & Drossart, P. Origins of atmospheric zonal winds. Nature 421, 36 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Yano, J. I., Talagrand, O. & Drossart, P. Deep two-dimensional turbulence: An idealized model for atmospheric jets of the giant outer planets. Geophys. Astrophys. Fluid Dyn. 99, 137–150 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Aurnou, J. M. & Heimpel, M. H. Zonal jets in rotating convection with mixed mechanical boundary conditions. Icarus 169, 492–498 (2004)

    Article  ADS  Google Scholar 

  15. Ingersoll, A. P. Atmospheric dynamics of the outer planets. Science 248, 308–315 (1990)

    Article  ADS  CAS  Google Scholar 

  16. Rhines, P. B. Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975)

    Article  ADS  Google Scholar 

  17. Schoff, R. & Colin de Verdiere, A. Taylor columns between concentric spheres. Geophys. Astrophys. Fluid Dyn. 86, 43–73 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  18. Busse, F. H. A simple model of convection in the Jovian atmosphere. Icarus 20, 255–260 (1976)

    Article  ADS  Google Scholar 

  19. Manneville, J. B. & Olson, P. Banded convection in rotating fluid spheres and the circulation of the Jovian atmosphere. Icarus 122, 242–250 (1996)

    Article  ADS  CAS  Google Scholar 

  20. Jones, C. A., Rotvig, J. & Abdulrahman, A. Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 30, doi:10.1029/2003GL016980 (2003)

  21. Read, P. L. et al. Jupiter's and Saturn's convectively driven banded jets in the laboratory. Geophys. Res. Lett. 31, doi:10.1029/2004GL020106 (2004)

  22. Atkinson, D. H., Pollack, J. B. & Seiff, A. The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 22911–22928 (1998)

    Article  ADS  Google Scholar 

  23. Kirk, R. L. & Stevenson, D. J. Hydromagnetic constraints on deep zonal flow in the giant planets. Astrophys. J. 316, 836–846 (1987)

    Article  ADS  Google Scholar 

  24. Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J. P. A systematic experimental study of spherical shell convection in water and liquid gallium. Phys. Earth. Planet. Inter. 128, 51–74 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Evonuk, M. & Glatzmaier, G. A. 2D studies of various approximations used for modeling convection in the giant planets. Geophys. Astrophys. Fluid Dyn. 98, 241–255 (2004)

    Article  ADS  Google Scholar 

  26. Hubbard, W. B. Gravitational signature of Jupiter's deep zonal flows. Icarus 137, 357–359 (1999)

    Article  ADS  Google Scholar 

  27. Martinez, C. NASA selects new frontier mission concept study. http://www.jpl.nasa.gov/news/news.cfm?release=2005-090 (2005).

  28. Wicht, J. Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281–302 (2002)

    Article  ADS  Google Scholar 

  29. Al-Shamali, F. M., Heimpel, M. H. & Aurnou, J. M. Varying the spherical shell geometry in rotating thermal convection. Geophys. Astrophys. Fluid Dyn. 98, 153–169 (2004)

    Article  ADS  Google Scholar 

  30. Kuang, W.-J. & Bloxham, J. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action. J. Comp. Phys. 153, 51–81 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding was provided by NSERC Canada, UCLA, and the DFG Germany priority programme ‘Geomagnetic variations’. Computational resources were provided by the Western Canada Research Grid (West Grid).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Heimpel.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Results, Supplementary Discussion, Supplementary Figures 1–4 and Supplementary Table 1. (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heimpel, M., Aurnou, J. & Wicht, J. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–196 (2005). https://doi.org/10.1038/nature04208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04208

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing