Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The yeast Pif1p helicase removes telomerase from telomeric DNA

Abstract

Telomeres are the physical ends of eukaryotic chromosomes. Genetic studies have established that the baker's yeast Pif1p DNA helicase is a negative regulator of telomerase, the specialized reverse transcriptase that maintains telomeric DNA, but the biochemical basis for this inhibition was unknown. Here we show that in vitro, Pif1p reduces the processivity of telomerase and releases telomerase from telomeric oligonucleotides. The released telomerase is enzymatically active because it is able to lengthen a challenger oligonucleotide. In vivo, overexpression of Pif1p reduces telomerase association with telomeres, whereas depleting cells of Pif1p increases the levels of telomere-bound Est1p, a telomerase subunit that is present on the telomere when telomerase is active. We propose that Pif1p helicase activity limits telomerase action both in vivo and in vitro by displacing active telomerase from DNA ends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity of Pif1p.
Figure 2: Pif1p reduces telomerase processivity and promotes lengthening of challenger primers.
Figure 3: Pif1p overexpression decreases Est2p and Est1p telomere association.
Figure 4: Pif1p depletion increases telomere association of Est1p.

Similar content being viewed by others

References

  1. Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol. 10, 487–490 (2000)

    Article  CAS  Google Scholar 

  2. Diede, S. J. & Gottschling, D. E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 99, 723–733 (1999)

    Article  CAS  Google Scholar 

  3. Taggart, A. K. P., Teng, S.-C. & Zakian, V. A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Fisher, T. S., Taggart, A. K. P. & Zakian, V. A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nature Struct. Mol. Biol. 11, 1198–1205 (2004)

    Article  CAS  Google Scholar 

  5. Schramke, V. et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nature Genet. 36, 46–54 (2004)

    Article  CAS  Google Scholar 

  6. Schulz, V. P. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994)

    Article  CAS  Google Scholar 

  7. Zhou, J.-Q., Monson, E. M., Teng, S.-C., Schulz, V. P. & Zakian, V. A. The Pif1p helicase, a catalytic inhibitor of telomerase lengthening of yeast telomeres. Science 289, 771–774 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Mangahas, J. L., Alexander, M. K., Sandell, L. L. & Zakian, V. A. Repair of chromosome ends after telomere loss in Saccharomyces. Mol. Biol. Cell 12, 4078–4089 (2001)

    Article  CAS  Google Scholar 

  9. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Lahaye, A., Stahl, H., Thines-Sempoux, D. & Foury, F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10, 997–1007 (1991)

    Article  CAS  Google Scholar 

  11. Lue, N. F. Adding to the ends: what makes telomerase processive and how important is it? Bioessays 26, 955–962 (2004)

    Article  CAS  Google Scholar 

  12. Peng, Y., Mian, I. S. & Lue, N. F. Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol. Cell 7, 1201–1211 (2001)

    Article  CAS  Google Scholar 

  13. Collins, K. Ciliate telomerase biochemistry. Annu. Rev. Biochem. 68, 187–218 (1999)

    Article  CAS  Google Scholar 

  14. Greider, C. W. Telomerase is processive. Mol. Cell. Biol. 11, 4572–4580 (1991)

    Article  CAS  Google Scholar 

  15. Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989)

    Article  CAS  Google Scholar 

  16. Cohn, M. & Blackburn, E. H. Telomerase in yeast. Science 269, 396–400 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Haering, C. H., Nakamura, T. M., Baumann, P. & Cech, T. R. Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 97, 6367–6372 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Singh, S. M., Steinberg-Neifach, O., Mian, I. S. & Lue, N. F. Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot. Cell 1, 967–977 (2002)

    Article  CAS  Google Scholar 

  19. Prowse, K. R., Avilion, A. A. & Greider, C. W. Identification of a nonprocessive telomerase activity from mouse cells. Proc. Natl Acad. Sci. USA 90, 1493–1497 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Mantell, L. L. & Greider, C. W. Telomerase activity in germline and embryonic cells of Xenopus. EMBO J. 13, 3211–3217 (1994)

    Article  CAS  Google Scholar 

  21. Prescott, J. & Blackburn, E. Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev. 11, 2790–2800 (1997)

    Article  CAS  Google Scholar 

  22. Forstemann, K. & Lingner, J. Molecular basis for telomere repeat divergence in budding yeast. Mol. Cell. Biol. 21, 7277–7286 (2001)

    Article  CAS  Google Scholar 

  23. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Veaute, X. et al. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J. 24, 180–189 (2005)

    Article  CAS  Google Scholar 

  27. Collins, K. & Greider, C. W. Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. Genes Dev. 7, 1364–1376 (1993)

    Article  CAS  Google Scholar 

  28. Hammond, P. W., Lively, T. N. & Cech, T. R. The anchor site of telomerase from Euplotes aediculatus revealed by photo-cross-linking to single- and double-stranded DNA primers. Mol. Cell. Biol. 17, 296–308 (1997)

    Article  CAS  Google Scholar 

  29. Shiratori, A. et al. Systematic identification, classification and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and northern analysis. Yeast 15, 219–253 (1999)

    Article  CAS  Google Scholar 

  30. Teixeira, M. T., Arneric, M., Sperisen, P. & Lingner, J. Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117, 323–335 (2004)

    Article  CAS  Google Scholar 

  31. Bessler, J. B., Torres, J. Z. & Zakian, V. A. The Pif1p subfamily of helicases: region specific DNA helicases. Trends Cell Biol. 11, 60–65 (2001)

    Article  CAS  Google Scholar 

  32. Zhou, J.-Q. et al. Schizosaccharomyces pombe pfh1 + encodes an essential 5′ to 3′ DNA helicase that is a member of the PIF1 sub-family of DNA helicases. Mol. Biol. Cell 13, 2180–2191 (2002)

    Article  CAS  Google Scholar 

  33. Bennett, R. J., Sharp, J. A. & Wang, J. C. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273, 9644–9650 (1998)

    Article  CAS  Google Scholar 

  34. Burgers, P. M. Overexpression of multisubunit replication factors in yeast. Methods 18, 349–355 (1999)

    Article  CAS  Google Scholar 

  35. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsukamoto, Y., Taggart, A. K. P. & Zakian, V. A. The role of the Mre11–Rad50–Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11, 1328–1335 (2001)

    Article  CAS  Google Scholar 

  37. Monson, E. K., Schulz, V. P. & Zakian, V. A. in Genomic Instability and Immortality in Cancer (eds Mihich, E. & Hartwell, L.) 97–110 (Plenum, New York, 1997)

    Book  Google Scholar 

Download references

Acknowledgements

We thank A. Chan for help with some of the experiments and J. Cooper, T. Fisher and M. Sabourin for comments on the manuscript. This work was supported by the NIH. J.B.B. was supported in part by a fellowship from the Association de la Recherche contre le Cancer and in part from a fellowship from the NJ Commission on Cancer Research; L.R.V. was supported in part by a Helen Hay Whitney post doctoral fellowship and in part by an NIH grant. Author Contributions J.-B.B. and L.R.V. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Zakian.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Detailed protocol of Pif1p overexpression in bacteria and Pif1p purification. Detailed protocol of the preparation of telomerase extracts. (DOC 26 kb)

Supplementary Figure S1

Schematic drawing describing how Pif1p uses its ATPase activity to inhibit telomerase. (PDF 145 kb)

Supplementary Figure S2

Binding of Pif1p and Pif1p-K264A to single stranded DNA as assessed by bandshift experiments. (PDF 99 kb)

Supplementary Figure S3

Inhibition of telomerase activity at various Pif1p concentrations in vitro. (PDF 308 kb)

Supplementary Figure S4

In vitro release by Pif1p of Est2p bound to immobilized telomeric oligonucleotides. (PDF 129 kb)

Supplementary Figure S5

Lack of effect of Pif1p depletion on the association of Est2p or Cdc13p on telomere ends in vivo. (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulé, JB., Vega, L. & Zakian, V. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57–61 (2005). https://doi.org/10.1038/nature04091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04091

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing