Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geology and insolation-driven climatic history of Amazonian north polar materials on Mars

Abstract

Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained1,2,3,4,5,6. Recently acquired Mars Orbiter Laser Altimeter data7 and Mars Orbiter Camera high-resolution images8 from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images9 from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses10,11,12,13,14,15,16,17. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (3.0 Gyr ago to present)18,19. Erosion and redeposition of putative circumpolar mud volcano deposits15 (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4–5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amazonian geology of the north polar region of Mars.
Figure 2: Early Amazonian north polar features on Mars.
Figure 3: Geologic characteristics of north polar lower layered deposits (LLD) of Planum Boreum.

Similar content being viewed by others

References

  1. Howard, A. D. Origin of the stepped topography of the Martian poles. Icarus 34, 581–599 (1978)

    Article  ADS  Google Scholar 

  2. Squyres, S. W. The evolution of dust deposits in the Martian north polar region. Icarus 40, 244–261 (1979)

    Article  ADS  CAS  Google Scholar 

  3. Howard, A. D., Cutts, J. A. & Blasius, K. R. Stratigraphic relationships within Martian polar-cap deposits. Icarus 50, 161–215 (1982)

    Article  ADS  Google Scholar 

  4. Cutts, J. A. & Lewis, B. H. Models of climatic cycles recorded in Martian polar layered deposits. Icarus 50, 216–244 (1982)

    Article  ADS  Google Scholar 

  5. Tanaka, K. L. & Scott, D. H. Geologic Map of the Polar Regions of Mars (Misc. Invest. Ser. Map I-1802-C, US Geol. Surv., Reston, Virginia, 1987)

    Google Scholar 

  6. Herkenhoff, K. E. & Plaut, J. J. Surface ages and resurfacing rates of the polar layered deposits on Mars. Icarus 144, 243–253 (2000)

    Article  ADS  Google Scholar 

  7. Smith, D. E. et al. Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001)

    Article  ADS  Google Scholar 

  8. Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001)

    Article  ADS  Google Scholar 

  9. Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Thomas, P. C. et al. North-south geological differences between the residual polar caps on Mars. Nature 404, 161–164 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Kolb, E. J. & Tanaka, K. L. Geologic history of the polar regions of Mars based on Mars Global Surveyor data: II. Amazonian Period. Icarus 154, 22–39 (2001)

    Article  ADS  Google Scholar 

  12. Byrne, S. & Murray, B. C. North polar stratigraphy and the paleo-erg of Mars. J. Geophys. Res. 107, doi:10.1029/2001JE001615 (2002)

  13. Koutnik, M., Byrne, S. & Murray, B. South polar layered deposits of Mars: The cratering record. J. Geophys. Res. 107, doi:10.1029/2001JE001805 (2002)

  14. Laskar, J., Levrard, B. & Mustard, J. F. Orbital forcing of the martian polar layered deposits. Nature 419, 375–377 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Tanaka, K. L., Skinner, J. A. Jr, Hare, T. M., Joyal, T. & Wenker, A. Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res. 108, doi:10.1029/2002JE001908 (2003)

  16. Fishbaugh, K. E. & Head, J. W. III Origin and characteristics of the Mars north polar basal unit and implications for polar geologic history. Icarus 174, 444–474 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Milkovich, S. M. & Head, J. W. III North polar cap of Mars: Polar layered deposit characterization and identification of a fundamental climate signal. J. Geophys. Res. 110, E01005, doi:10.1029/2004JE002349 (2005)

    Article  ADS  Google Scholar 

  18. Tanaka, K. L. The stratigraphy of Mars. J. Geophys. Res. 91, E139–E158 (1986)

    Article  ADS  Google Scholar 

  19. Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001)

    Article  ADS  Google Scholar 

  20. Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004)

    Article  ADS  Google Scholar 

  21. Parker, T. J., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in west Deuteronilus Mensae, Mars: Implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989)

    Article  ADS  Google Scholar 

  22. Baker, V. R. et al. Ancient oceans, ice sheets, and the hydrological cycle on Mars. Nature 352, 589–594 (1991)

    Article  ADS  Google Scholar 

  23. Wyatt, M. B., McSween, H. Y. Jr, Tanaka, K. L. & Head, J. W. III . Global geologic context for rock types and surface alteration on Mars. Geology 32, 645–648 (2004)

    Article  ADS  Google Scholar 

  24. Mustard, J. F., Cooper, C. D. & Rifkin, M. K. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412, 411–414 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Robertson, A. & Ocean Drilling Program Leg 160 Scientific Party, Mud volcanism on the Mediterranean Ridge: Initial results of Ocean Drilling Program Leg 160. Geology 24, 239–242 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Mellon, M. T. & Jakosky, B. M. The distribution and behaviour of Martian ground ice during past and present epochs. J. Geophys. Res. 100, 11781–11799 (1995)

    Article  ADS  Google Scholar 

  27. Fishbaugh, K. E. Characterization of Martian north polar geologic units using Mars Odyssey THEMIS data. Lunar Planet Sci. Conf. [CD-ROM] XXXVI, Abstr. no. 1335 (2005).

  28. Rahmstorf, S. Timing of abrupt climate change: A precise clock. Geophys. Res. Lett. 30, doi:10.1029/2003GL017115 (2003)

Download references

Acknowledgements

I acknowledge discussions and other assistance from S. Byrne, K. Fishbaugh, E. Kolb, K. Herkenhoff, A. Rodriguez, J. Skinner and T. Hare. This work was supported by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. Tanaka.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars. Nature 437, 991–994 (2005). https://doi.org/10.1038/nature04065

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04065

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing