Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering atomic and molecular nanostructures at surfaces

Abstract

The fabrication methods of the microelectronics industry have been refined to produce ever smaller devices, but will soon reach their fundamental limits. A promising alternative route to even smaller functional systems with nanometre dimensions is the autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces. This approach combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed. Once the mechanisms controlling the self-ordering phenomena are fully understood, the self-assembly and growth processes can be steered to create a wide range of surface nanostructures from metallic, semiconducting and molecular materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two approaches to control matter at the nanoscale.
Figure 2: Atomic-scale view of growth processes at surfaces.
Figure 3: Magnetism at the spatial limit.
Figure 4: Semiconductor quantum structures.
Figure 5: Steering self-assembly of supramolecular nanostructures using hydrogen-bonding.
Figure 6: Metallosupramolecular assembly of low-dimensional Fe-carboxylate coordination systems on a square Cu(100) substrate.

Similar content being viewed by others

References

  1. Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. 23, 22–36 ( 1960).

    Google Scholar 

  2. Binnig, G. & Rohrer, H. Scanning tunneling microscopy — from birth to adolescence. Rev. Mod. Phys. 59, 615–625 ( 1987).

    ADS  CAS  Google Scholar 

  3. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 ( 1990).

    ADS  CAS  Google Scholar 

  4. Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 ( 1993).

    ADS  CAS  Google Scholar 

  5. Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22–28 ( 1999).

    ADS  CAS  Google Scholar 

  6. Bohr, M. T. Nanotechnology goals and challenges for electronics applications. IEEE Trans. Nanotechnol. 1, 56–62 ( 2002).

    ADS  Google Scholar 

  7. Thomson, D. A. & Best, J. S. The future of magnetic data storage technology. IBM J. Res. Dev. 3, 311–321 ( 2000).

    Google Scholar 

  8. Gates, B. D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 ( 2005).

    CAS  PubMed  Google Scholar 

  9. Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406, 1027–1031 ( 2000).

    CAS  PubMed  Google Scholar 

  10. Xia, Y. N., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 ( 1999).

    CAS  PubMed  Google Scholar 

  11. Vettiger, P. et al. The ‘millipede’-nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 ( 2002).

    ADS  Google Scholar 

  12. Lindsey, J. S. Self-assembly in synthetic routes to devices. Biological principles and chemical perspectives: a review. New J. Chem. 15, 153–180 ( 1991).

    CAS  Google Scholar 

  13. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry — a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 ( 1991).

    ADS  CAS  PubMed  Google Scholar 

  14. Philp, D. & Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Edn Engl. 35, 1154–1196 ( 1996).

    Google Scholar 

  15. Nicolis, G. & Prigogine, I. Self-Organization in Non-Equilibrium Systems: From Dissipative Structure Formation to Order through Fluctuations (Wiley, New York, 1977).

    MATH  Google Scholar 

  16. Eigen, M. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 33, 465–523 ( 1971).

    ADS  Google Scholar 

  17. Zhang, Z. Y. & Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 ( 1997).

    CAS  PubMed  Google Scholar 

  18. Brune, H. Microscopic view of epitaxial growth: nucleation and aggregation. Surf. Sci. Rep. 31, 121–229 ( 1998).

    ADS  CAS  Google Scholar 

  19. Barth, J. V. Transport of adsorbates at metal surfaces : From thermal migration to hot precursors. Surf. Sci. Rep. 40, 75–150 ( 2000).

    ADS  CAS  Google Scholar 

  20. Röder, H., Hahn, E., Brune, H., Bucher, J. P. & Kern, K. Building one-dimensional and two-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366, 141–143 ( 1993).

    ADS  Google Scholar 

  21. Brune, H., Giovannini, M., Bromann, K. & Kern, K. Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394, 451–453 ( 1998).

    ADS  CAS  Google Scholar 

  22. Li, J. L. et al. Spontaneous assembly of perfectly ordered identical-size nanocluster arrays. Phys. Rev. Lett. 88, 066101 ( 2002).

    ADS  PubMed  Google Scholar 

  23. Lehn, J. -M. Supramolecular Chemistry, Concepts and Perspectives (VCH, Weinheim, 1995).

    Google Scholar 

  24. Gimzewski, J. K. & Joachim, C. Nanoscale science of single molecules using local probes. Science 283, 1683–1688 ( 1999).

    ADS  CAS  PubMed  Google Scholar 

  25. Rosei, F. et al. Properties of large organic molecules at surfaces. Prog. Surf. Sci. 71, 95–146 ( 2003).

    ADS  CAS  Google Scholar 

  26. Barth, J. V. et al. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Edn Engl. 39, 1230–1234 ( 2000).

    CAS  Google Scholar 

  27. Ibach, H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 193–263 ( 1997).

    ADS  CAS  Google Scholar 

  28. Barth, J. V., Brune, H., Ertl, G. & Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface — atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 42, 9307–9318 ( 1990).

    ADS  CAS  Google Scholar 

  29. Kern, K. et al. Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces — Cu(110)–(2x1)O. Phys. Rev. Lett. 67, 855–858 ( 1991).

    ADS  CAS  PubMed  Google Scholar 

  30. Teichert, C. Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365, 335–432 ( 2002).

    ADS  CAS  Google Scholar 

  31. Bruno, P. Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B 39, 865–868 ( 1989).

    ADS  CAS  Google Scholar 

  32. van der Laan, G. Microscopic origin of magnetocrystalline anisotropy in transition metal thin films. J. Phys. Cond. Mat. 10, 3239–3253 ( 1998).

    ADS  CAS  Google Scholar 

  33. Wildberger, K., Stepanyuk, V. S., Lang, P., Zeller, R. & Dederichs, P. H. Magnetic nanostructures — 4d clusters on Ag(001). Phys. Rev. Lett. 75, 509–512 ( 1995).

    ADS  CAS  PubMed  Google Scholar 

  34. Himpsel, F. J., Ortega, J. E., Mankey, G. J. & Willis, R. F. Magnetic nanostructures. Adv. Phys. 47, 511–597 ( 1998).

    ADS  CAS  Google Scholar 

  35. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 ( 2000).

    ADS  CAS  PubMed  Google Scholar 

  36. Gambardella, P., Blanc, M., Brune, H., Kuhnke, K. & Kern, K. One-dimensional metal chains on Pt vicinal surfaces. Phys. Rev. B 61, 2254–2262 ( 2000).

    ADS  CAS  Google Scholar 

  37. Kuhnke, K. & Kern, K. Vicinal metal surfaces as nanotemplates for the growth of low-dimensional structures. J. Phys. Cond. Mat. 15, S3311–S3335 ( 2003).

    ADS  CAS  Google Scholar 

  38. Rusponi, S. et al. The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures. Nature Mater. 2, 546–551 ( 2003).

    ADS  CAS  Google Scholar 

  39. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 ( 2002).

    ADS  CAS  PubMed  Google Scholar 

  40. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 ( 2003).

    ADS  CAS  PubMed  Google Scholar 

  41. Gambardella, P. et al. Oscillatory magnetic anisotropy in one-dimensional atomic wires. Phys. Rev. Lett. 93, 077203 ( 2004).

    ADS  CAS  PubMed  Google Scholar 

  42. Bimberg, D., Grundmann, M. & Ledentsov, N. N. Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  43. Costantini, G. et al. Universal island shapes of self-organized semiconductor quantum dots. Appl. Phys. Lett. 85, 5673–5675 ( 2004).

    ADS  CAS  Google Scholar 

  44. Daruka, I., Tersoff, J. & Barabasi, A. L. Shape transition in growth of strained islands. Phys. Rev. Lett. 82, 2753–2756 ( 1999).

    ADS  CAS  Google Scholar 

  45. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 ( 2000).

    ADS  CAS  PubMed  Google Scholar 

  46. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2284 ( 2000).

    ADS  CAS  PubMed  Google Scholar 

  47. Burkard, G., Loss, D. & DiVincenzo, D. P. Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 ( 1999).

    ADS  CAS  Google Scholar 

  48. Cole, T. & Lusth, J. C. Quantum-dot cellular automata. Prog. Quantum Electron. 25, 165–189 ( 2001).

    ADS  CAS  Google Scholar 

  49. Shchukin, V. A. & Bimberg, D. Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 ( 1999).

    ADS  CAS  Google Scholar 

  50. Heidemeyer, H., Denker, U., Müller, C. & Schmidt, O. G. Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays. Phys. Rev. Lett. 91, 196103 ( 2003).

    ADS  CAS  PubMed  Google Scholar 

  51. Lee, H., Johnson, J. A., He, M. Y., Speck, J. S. & Petroff, P. M. Strain-engineered self-assembled semiconductor quantum dot lattices. Appl. Phys. Lett. 78, 105–107 ( 2001).

    ADS  CAS  Google Scholar 

  52. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature-dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 ( 1982).

    ADS  CAS  Google Scholar 

  53. Nakajima, F., Miyoshi, Y., Motohisa, J. & Fukui, T. Single-electron AND/NAND logic circuits based on a self-organized dot network. Appl. Phys. Lett. 83, 2680–2682 ( 2003).

    ADS  CAS  Google Scholar 

  54. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 ( 1982).

    MathSciNet  Google Scholar 

  55. Shor, P. in Proc 35th Annu. Symp. Foundations of Computer Science (IEEE, Los Alamitos, 1994).

    Google Scholar 

  56. Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 ( 1985).

    ADS  MathSciNet  MATH  Google Scholar 

  57. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 ( 1995).

    ADS  CAS  PubMed  Google Scholar 

  58. Schedelbeck, G., Wegscheider, W., Bichler, M. & Abstreiter, G. Coupled quantum dots fabricated by cleaved edge overgrowth: From artificial atoms to molecules. Science 278, 1792–1795 ( 1997).

    ADS  CAS  PubMed  Google Scholar 

  59. Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 ( 2001).

    ADS  CAS  PubMed  Google Scholar 

  60. Songmuang, R., Kiravittaya, S. & Schmidt, O. G. Formation of lateral quantum dot molecules around self-assembled nanoholes. Appl. Phys. Lett. 82, 2892–2894 ( 2003).

    ADS  CAS  Google Scholar 

  61. Deng, X. & Krishnamurthy, M. Self-assembly of quantum-dot molecules: heterogeneous nucleation of SiGe islands on Si(100). Phys. Rev. Lett. 81, 1473–1476 ( 1998).

    ADS  CAS  Google Scholar 

  62. Prins, L. J., Reinhoudt, D. N. & Timmerman, P. Non-covalent synthesis using hydrogen bonding. Angew. Chem. Int. Edn Engl. 40, 2382 ( 2001).

    CAS  Google Scholar 

  63. Barth, J. V., Weckesser, J., Lin, N., Dmitriev, S. & Kern, K. Supramolecular architectures and nanostructures at surfaces. Appl. Phys. A 76, 645 ( 2003).

    ADS  CAS  Google Scholar 

  64. Feyter, S. D. & Schryver, F. C. D. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 32, 139–150 ( 2003).

    PubMed  Google Scholar 

  65. Lin, N., Dmitriev, A., Weckesser, J., Barth, J. V. & Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew. Chem. Int. Edn Engl. 41, 4779 ( 2002).

    CAS  Google Scholar 

  66. Lukas, S., Witte, G. & Wöll, C. Novel mechanism for molecular self-assembly on metal substrates : unidirectional rows of pentacene on Cu(110) produced by substrate-mediated repulsion. Phys. Rev. Lett. 88, 028301 ( 2002).

    ADS  CAS  PubMed  Google Scholar 

  67. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y. & Mashiko, S. Selective assembly on a surface of supramolecular aggregates of controlled size and shape. Nature 413, 619–621 ( 2001).

    ADS  CAS  PubMed  Google Scholar 

  68. Böhringer, M. et al. Two-dimensional self-assembly of supramolecular clusters and chains. Phys. Rev. Lett. 83, 324–327 ( 1999).

    ADS  Google Scholar 

  69. Otero, R. et al. One-dimensional assembly and selective orientation of Lander molecules on an O-Cu template. Angew. Chem. Int. Edn Engl. 43, 2092–2095 ( 2004).

    CAS  Google Scholar 

  70. Clair, S., Pons, S., Brune, H., Kern, K. & Barth, J. V. Mesoscopic metallosupramolecular texturing through hierarchic assembly. Angew. Chem. Int. Edn Engl. (in the press).

  71. Barth, J. V. et al. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D vs. 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 124, 7991–8000 ( 2002).

  72. Weckesser, J., Vita, A. D., Barth, J. V., Cai, C. & Kern, K. Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Phys. Rev. Lett. 87, 096101 ( 2001).

    ADS  CAS  PubMed  Google Scholar 

  73. Dmitriev, A., Lin, N., Weckesser, J., Barth, J. V. & Kern, K. Supramolecular assemblies of trimesic acid on a Cu(100) surface. J. Phys. Chem. B 106, 6907–6912 ( 2002).

    CAS  Google Scholar 

  74. Griessl, S., Lackinger, M., Edelwirth, M., Hietschold, M. & Heckl, W. M. Self-assembled two-dimensional molecular host-guest architectures from trimesic acid. Single Molecules 3, 25–31 ( 2002).

    ADS  CAS  Google Scholar 

  75. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 ( 2003).

    ADS  CAS  PubMed  Google Scholar 

  76. Leininger, S., Olenyuk, B. & Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 100, 853–908 ( 2000).

    CAS  PubMed  Google Scholar 

  77. Holiday, B. J. & Mirkin, C. A. Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Edn Engl. 40, 2022–2043 ( 2002).

    Google Scholar 

  78. Lingenfelder, M. et al. Towards surface-supported supramolecular architectures: tailored coordination assembly of 1,4-benzenedicarboxylate and Fe on Cu(100). Chem. Eur. J. 10, 1913–1919 ( 2004).

    CAS  PubMed  Google Scholar 

  79. Dmitriev, A. et al. Design of extended surface-supported chiral metal-organic arrays comprising mononuclear iron centers. Langmuir 41, 4799–4801 ( 2004).

    Google Scholar 

  80. Dmitriev, A., Spillmann, H., Lin, N., Barth, J. V. & Kern, K. Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. Angew. Chem. Int. Edn Engl. 41, 2670–2673 ( 2003).

    Google Scholar 

  81. Stepanow, S. et al. Steering molecular organization and host-guest interactions using tailor-made two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 ( 2004).

    ADS  CAS  Google Scholar 

  82. Classen, T. et al. Templated growth of metal-organic coordination chains at surfaces. Angew. Chem. Int. Edn Engl. (in the press).

  83. Messina, P. et al. Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface. J. Am. Chem. Soc. 124, 14000–14001 ( 2002).

    CAS  PubMed  Google Scholar 

  84. Spillmann, H. et al. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 125, 10725–10728 ( 2003).

    CAS  PubMed  Google Scholar 

  85. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 ( 2003).

    ADS  CAS  Google Scholar 

  86. Kitagawa, S., Kitaura, R. & Noro, S. Functional coordination polymers. Angew. Chem. Int. Edn Engl. 43, 2334–2375 ( 2004).

    CAS  Google Scholar 

  87. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 ( 2000).

    ADS  CAS  PubMed  Google Scholar 

  88. Ouyang, M. & Awscholom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 ( 2003).

    ADS  CAS  PubMed  Google Scholar 

  89. Niemeyer, C. M. Nanoparticles, proteins and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Edn Engl. 40, 4128–4158 ( 2001).

    CAS  Google Scholar 

  90. Seeman, N. C. & Belcher, A. M. Emulating biology: Building nanostructures from the bottom up. Proc. Natl Acad. Sci. USA 99, 6451–6455 ( 2002).

    ADS  CAS  PubMed  Google Scholar 

  91. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 ( 2003).

    ADS  CAS  Google Scholar 

  92. Cleland, A. N. & Roukes, M. L. A nanometre-scale mechanical electrometer. Nature 392, 160–162 ( 1998).

    ADS  Google Scholar 

  93. Kind, H. et al. Patterned films of nanotubes using microcontact printing of catalysts. Adv. Mater. 11, 1285–1289 ( 1999).

    CAS  Google Scholar 

  94. Tans, S. J., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 ( 1998).

    ADS  CAS  Google Scholar 

  95. Ross, F. M., Tromp, R. M. & Reuter, M. C. Transition states between pyramids and domes during Ge/Si island growth. Science 286, 1931–1934 ( 1999).

    CAS  PubMed  Google Scholar 

  96. Corso, M. et al. Boron nitride nanomesh. Science 303, 217–220 ( 2004).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.K. thanks the many students, postdocs and scientific collaborators who have contributed to the exploration of the atomic world of surfaces and nanostructures. Special thanks go to N. Lin for his enthusiasm in advancing the concepts of supramolecular chemistry at surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kern.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, J., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005). https://doi.org/10.1038/nature04166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04166

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing